Abstract:
A bump inspecting apparatus lights a spherical solder bump mounted on the surface of a circuit board and has a reinforcing resin applied to the lower half thereof from all circumferential directions with rays of light which intersect at a predetermined angle. An image of the lighted solder bump is captured while the amount of light irradiated upon the central portion of a solder bump is reduced. An object is extracted from image data obtained by the image capture and the area and/or the aspect ratio of the object are confirmed. The quality of the state of the reinforcing resin applied to the solder bump can be inspected.
Abstract:
Systems and techniques for detecting the presence of foreign material in food utilizing optical backlighting and/or ultrasonic inspection are presented. In optical backlighting, a substantially monochromatic light source optically backlights a food stream with source light having a wavelength between about 500 and 600 nm. An image of the food stream is captured and the presence of foreign material is determined when a portion of the detected image exceeds a predetermined threshold. The technique is especially suitable for the detection of bone in chicken meat, and the light source can be a planar array of green LEDs. In ultrasonic inspection, a process stream is interrogated with pulses of ultrasound and the presence of foreign material is determined based on the detected off-angle ultrasound scattering response.
Abstract:
The matrix biochip sensing system of this invention uses a low-cost LED (light emit diode) matrix as the light source for the sensing system. The matrix biochip sensing system comprises an LED matrix light source, a biochip clamping member, an optical information filter module, an optical lens array, an optical sensor and a signal processing and control module. The light spots of the LED matrix is turned on in sequence, such that the fluorescent spots of the biochip that are respectively corresponding to the light spots of the laser diodes matrix may be actuated in the same sequence. Fluorescent spots so actuated are focused to a single optical sensor through an optical lens. At each sensing cycle of the optical sensor, only one fluorescent spot may be actuated. The output of the optical sensor in combination of the time axis may be processed by the signal processing and control module to obtain the genetic signals of the biochip.
Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
The invention relates to a device (100) and a corresponding method for thermoacoustic sensing, in particular thermoacoustic imaging, the device (100) comprising: a) an irradiation unit (10) configured to generate electromagnetic and/or particle energy exhibiting a first modulation, the first modulation comprising at least one frequency and to continuously emit the energy towards a target (1), whereby acoustic waves are continuously generated in the target, the acoustic waves exhibiting a second modulation, the second modulation comprising the at least one frequency and/or a harmonic frequency of the at least one frequency; b) a detection unit (20) configured to simultaneously detect the acoustic waves exhibiting the second modulation while the energy exhibiting the first modulation is being continuously emitted towards the target (1); and c) a processing unit (30) configured to determine at least one thermoacoustic value of an amplitude and/or a phase of the second modulation of the acoustic waves at the at least one frequency and/or at a harmonic frequency of the at least one frequency. The invention allows for fast and economic thermoacoustic sensing, in particular imaging of a region of interest of an object.
Abstract:
An optical measuring apparatus comprising at least one light emitting unit, a stage, at least one lens, and at least one light detector is provided. The light emitting unit emits a light beam. The stage contains accommodating spaces. The accommodating spaces move to the transmission path of the light beam in turn. The lens is located between the light emitting unit and the stage, whose orthogonal projection on the stage appears substantially to be a polygon. When one of the accommodating spaces moves to the transmission path of the light beam, a perpendicular bisector half line of each side of the polygon is not overlapped with another adjacent accommodating space of the accommodating spaces. An optical measuring method is also provided.
Abstract:
An apparatus and method are disclosed for examining optically a sample carried in a plurality of wells. A holder is adapted to receive and hold in place a sample carrier. A plurality of excitation means selectively introduce excitation towards a spatially limited portion of a sample carrier held in place by said holder. Detecting means receive and detect emission radiation coupled out from a light output window of a sample carrier held in place by said holder. Said detecting means is common to said excitation means and is configured to receive emission radiation from a plurality of different spatially limited portions of a sample carrier held in place by said holder.
Abstract:
A light guide member for an object detection apparatus for detecting an object adhered on a light translucent member based on change of quantity of reflection light received from the light translucent member includes a detection face where light exits to the light translucent member and reflection light reflected from the light translucent member enters, the detection face including a detection area where a part of the reflection light to enter the detection unit passes through, and a non-detection area where remaining part of the reflection light not to enter the detection unit passes through; a first intervening member disposed on the detection face attachable to the light translucent member via the first intervening member; and a second intervening member disposed on the detection face attachable to the light translucent member via the second intervening member. The first intervening member has flexibility greater than flexibility of the second intervening member.
Abstract:
An optical measuring apparatus comprising at least one light emitting unit, a stage, at least one lens, and at least one light detector is provided. The light emitting unit emits a light beam. The stage contains accommodating spaces. The accommodating spaces move to the transmission path of the light beam in turn. The lens is located between the light emitting unit and the stage, whose orthogonal projection on the stage appears substantially to be a polygon. When one of the accommodating spaces moves to the transmission path of the light beam, a perpendicular bisector half line of each side of the polygon is not overlapped with another adjacent accommodating space of the accommodating spaces. An optical measuring method is also provided.
Abstract:
The present invention is intended to allow to make a width of an LED wiring substrate compact and reduce the number of assembly parts and assembly man-hours, wherein each LED wiring substrate includes: a plurality of LEDs provided in a line shape along a longitudinal direction; and power-feeding line members provided in parallel with the plurality of LEDs, wherein the power-feeding line members are provided above an LED mounting surface of the LED wiring substrate, and in the adjacent LED wiring substrates, the power-feeding line members provided in one of the LED wiring substrates include contact terminals provided to extend outward in a longitudinal direction and contact with the power-feeding line members of the other LED wiring substrate.