Abstract:
A spectroscopic measurement apparatus 1A comprises an integrating sphere 20 in which a sample S is located, a spectroscopic analyzer 30 dispersing the light to be measured from the sample S and obtaining a wavelength spectrum, and a data analyzer 50. The analyzer 50 includes an object range setting section which sets a first object range corresponding to excitation light and a second object range corresponding to light emission from the sample S in a wavelength spectrum, and a sample information analyzing section which determines a luminescence quantum yield of the sample S, determines a measurement value Φ0 of the luminescence quantum yield from results of a reference measurement and a sample measurement, and determines, by using factors β, γ regarding stray light in the reference measurement, an analysis value Φ of the luminescence quantum yield with the effect of stray light reduced by Φ=βΦ0+γ. This realizes a spectroscopic measurement apparatus, a measurement method, and a measurement program which can reduce the effect of stray light generated in a spectrometer.
Abstract:
There is provided an inspection apparatus which illuminates at least part of a sample with diffused light from a diffused light source and inspects the sample based on light reflected from the sample. An illuminating chamber is defined by a wall member. The wall member has an inner wall surface for reflecting diffused light from the diffused light source, a sample-inserting opening formed through the wall member for inserting the at least part of the sample into the illuminating chamber therethrough, and a sample-observing opening formed through the wall member for permitting light reflected from the at least part of the sample to be emitted out of the illuminating chamber. The sample is observed by the use of an object-side telecentric optical system having a lens system for collecting parallel light from the light emitted from the sample-observing opening, and an aperture stop arranged at or in the vicinity of a back focal point of the lens system.
Abstract:
Colorimeter includes an illumination light reception unit, an attached part, a detection unit, a recognition unit, a color measurement control unit, and an output unit. To the attached part, a mask member is attached to cover the illumination light reception unit. The detection unit detects parts disposed on the mask member. The recognition unit recognizes information on the kind of the mask member in accordance with a detection result by the detection unit. The color measurement control unit causes the recognition unit to recognize information on the kind of mask member in accordance with the detection result at a first timing, and on the kind of mask member in accordance with the detection result at a second timing. The output unit performs a predetermined output in response to a discordance between the information on the kind of mask member at the first timing and at the second timing.
Abstract:
The light projection assemblies and opacity monitors described in this specification have an integrating sphere with an input aperture, an output aperture, and a spherical-shaped internal chamber. An LED source is located external to the chamber at the input aperture. A light baffle is located within the chamber at the output aperture. A condenser lens is located external to the chamber at the output aperture.
Abstract:
Optical analyzer (10,50,60) comprises an optically integrating cavity (20), the optically integrating cavity (20) formed by at least one optical light diffusing wall (31) and adapted to contain a sample of a solid agricultural product, the sample consisting of one or more sample elements (41,48), a light source (13,33), emitting light into the optically integrating cavity (20), whereas the at least one optical light diffusing wall (31) is utilized to convert emitted light to diffused light, whereas the sample at least partially or completely converts the diffused light to spectrally filtered light, and a spectral sensor (26). The sample is confined in the optically integrating cavity (20) while the spectral sensor (26) is being exposed to the spectrally filtered light. Patent application has independent claims also for optical analyzing method and sample preparation device.
Abstract:
A method for evaluating dispersion of a light-to-heat conversion material in a thermal transfer film includes calculating optical densities OD1 and OD2 of the thermal transfer film according to Equations 2 and 3, and calculating a dispersion evaluation value ΔOD according to Equation 1. The thermal transfer film has good dispersion of the light-to-heat conversion material when the dispersion evaluation value ΔOD is 0.1 or less, and the thermal transfer film has poor dispersion of the light-to-heat conversion material when the dispersion evaluation value ΔOD is greater than 0.1. ΔOD=|OD2−OD1| Equation 1 OD1=−log(T2/T1) Equation 2 OD2=−log(T3/T1) Equation 3
Abstract:
Systems and methods for measuring spectral distribution of an illumination source and providing desired output spectral radiance are described. The systems include a user defineable light source, an integrating sphere, and one or more light detectors.
Abstract:
A photodetecting device 1 includes an integrating sphere 20 for observing light to be measured generated according to irradiation of a sample with excitation light and a sample holder 60 removably attached to the integrating sphere 20, the integrating sphere 20 has an excitation light introducing hole 201 for introducing the excitation light and a sample introducing hole 205 for introducing a cell C held by the sample holder 60, the sample holder 60 is locked to the sample introducing hole 205 and holds the cell C for accommodating the sample, and the cell is disposed so that an entrance surface of the cell C, through which the excitation light enters the cell C, inclines relative to the surface perpendicular to the optical axis L of the excitation light.