Abstract:
An LC-based optical device compensates for differences in optical path lengths of polarization components of input beam. As a result, PDL and PMD of the optical device are reduced. The compensation mechanism may be a glass plate that is disposed in an optical path of a polarization component so that the optical path length of that polarization component can be made substantially equal to the optical path length of the other polarization component that traverses through a half-wave plate. Another compensation mechanism is a birefringent displacer that has two sections sandwiching a half-wave plate, wherein the two sections are of different widths and the planar front surface of the birefringent displacer can be positioned to be non-orthogonal with respect to the incident input light beam.
Abstract:
A wavelength conversion laser is provided with a pair of fundamental wave reflecting surfaces for reflecting a fundamental wave to define a plurality of fundamental wave paths passing a wavelength conversion element at different angles, and a control unit for controlling wavelength conversion efficiencies so that the wavelength conversion efficiency on a specific one of the plurality of fundamental wave paths extending in different directions between the pair of fundamental wave reflecting surfaces is highest.
Abstract:
A UV light generator for receiving a baseband light beam from a baseband light source is provided. The UV light generator includes a first lens unit, a second lens unit, a first frequency doubling crystal and a second frequency doubling crystal. The baseband light beam from the baseband light source passes through the first lens unit. The first lens unit and the second lens unit control a minimum of baseband light spot position and a minimum of second harmonic light spot position. The first frequency doubling crystal is disposed between the first lens unit and the second lens unit, and located on the minimum of baseband light spot position. The second frequency doubling crystal is disposed between the first lens unit and the second lens unit, and located on the minimum of second harmonic light spot position.
Abstract:
A laser beam source device includes: a light source which emits light having fundamental wavelength; a wavelength conversion element which converts the light having fundamental wavelength into light having conversion wavelength; a resonance element which transmits first light converted into the conversion wavelength light and reflects light not converted; an optical path conversion element which releases second light contained in the light reflected by the resonance element and converted into the conversion wavelength light in the same direction as the direction of the first light, and releases the light not converted toward the light source; and a supporting member. The resonance element is disposed in such a position that one end surface of the resonance element on the second light side is shifted to the supporting member from one end surface of the wavelength conversion element on the second light side.
Abstract:
A beam modulator (14) for modulating a beam (20) includes a modulator element (26) and a housing assembly (24). The modulator element (26) is positioned in the path of the beam (20). The housing assembly (24) retains the modulator element (26). Additionally, the housing assembly (24) defines a resonant cavity (328) with the modulator element (26) positioned therein. The housing assembly (24) includes a size adjuster (30) that can be moved to selectively adjust the size of the resonant cavity (328). As a result thereof, in certain embodiments, the resonant frequency of the beam modulator (14) can be easily tuned over a relatively large frequency range.
Abstract:
A wavelength converting apparatus that improves output performance of laser light subjected to wavelength conversion while improving the efficiency of laser light wavelength conversion. Wavelength converting apparatus (100) has: nonlinear optical crystal (110) converting wavelength of laser light propagating inside wavelength converting apparatus (100); right angle prism (130) deflecting laser light emanating from nonlinear optical crystal (110) and causing the laser light to be incident on nonlinear optical crystal (110) again, and to propagate in parallel and in opposite directions at a predetermined distance with respect to laser light before emanation from nonlinear optical crystal (110); and first dichroic mirror (120) separating laser light subjected to wavelength conversion inside nonlinear optical crystal (110) from the laser light before incidence on nonlinear optical crystal (110) for a second time.
Abstract:
Methods and apparatus are disclosed for directing optical radiation to make multiple passes across an extended region of an electro-optic material, where during each pass the electro-optic material converts a portion of the optical radiation into terahertz radiation, and where the optical radiation is directed into the electro-optic material to cause an amplitude of the terahertz radiation generated from one or more earlier passes of the optical radiation to be constructively enhanced by the terahertz radiation generated from a later pass of the optical radiation.
Abstract:
A wavelength converting laser includes: a fundamental-wave laser light source emitting a fundamental wave; and a wavelength conversion element converting the fundamental wave emitted from the fundamental-wave laser light source into a converted wave having a different wavelength from the fundamental wave, in which: a pair of fundamental-wave reflecting surfaces is arranged on both end sides of the wavelength conversion element in the directions of an optical axis thereof and reflects the fundamental wave to thereby pass the fundamental wave a plurality of times inside of the wavelength conversion element, and at least one of the fundamental-wave reflecting surfaces transmits the converted wave; and the pair of fundamental-wave reflecting surfaces allows the fundamental wave to cross inside of the wavelength conversion element and form a plurality of light-concentration points at places different from a cross point of the fundamental wave. The wavelength converting laser is capable of obtaining a high conversion efficiency stably and being miniaturized.
Abstract:
A light source apparatus includes: a light emitting element including a plurality of light emitting modules; a resonator; a transmitting-reflecting module which, being provided in an optical path between the light emitting element and the resonator, reflects one portion of light traveling from the resonator, and transmits another one portion; a current supply module; and at least one wiring module which connects the current supply module and the light emitting element, wherein a normal of a surface of the transmitting-reflecting module on which the light from the resonator falls incident is tilted in a specific direction relative to a main beam of a light flux which travels between the transmitting-reflecting module and the resonator, and at least one of the wiring modules is provided on a side of the light emitting modules opposite to a side of the specific direction.
Abstract:
An all-optical logic gates comprises a nonlinear element such as an optical resonator configured to receive optical input signals, at least one of which is amplitude-modulated to include data. The nonlinear element is configured in relation to the carrier frequency of the optical input signals to perform a logic operation based on the resonant frequency of the nonlinear element in relation to the carrier frequency. Based on the optical input signals, the nonlinear element generates an optical output signal having a binary logic level. A combining medium can be used to combine the optical input signals for discrimination by the nonlinear element to generate the optical output signal. Various embodiments include all-optical AND, NOT, NAND, NOR, OR, XOR, and XNOR gates and memory latch.