摘要:
A method for applying a resin film to the face of a semiconductor wafer, comprising: an assembly holding step of holding an assembly on the surface of chuck means, with the back of the assembly being opposed to the surface of the chuck means, the assembly including a frame having a mounting opening formed in a central portion of the frame, and a semiconductor wafer mounted in the mounting opening of the frame by sticking a mounting tape to the back of the frame and the back of the semiconductor wafer; a liquid droplet supply step of supplying liquid droplets of a solution having a resin dissolved therein onto the face of the semiconductor wafer in the assembly after the assembly holding step; and a spreading step of rotating the chuck means subsequently to the liquid droplet supply step, thereby spreading the liquid droplets throughout the face of the semiconductor wafer. The method further comprises a cleaning step of rotating the chuck means and also supplying a cleaning fluid to the surface of the frame after the spreading step, thereby cleaning the solution which has adhered to the surface of the frame.
摘要:
Contaminants from surfaces of temperature sensitive substrates, such as glass substrates are removed by exposing the surfaces to a hydrogen Surface-mixed diffusion flame for a predetermined duration of time. The predetermined duration of time being insufficient to heat up the surfaces substantially thereby causing damage to the temperature sensitive substrates.
摘要:
In a method for fabricating a metal interconnection of a semiconductor device, a lower interconnection and a lower insulation layer are formed over a semiconductor substrate. An etch stop layer is formed over the lower insulation layer. An upper insulation layer is formed over the etch stop layer. A first via hole is formed to expose the etch stop layer corresponding to the lower interconnection. A second via hole exposing the lower interconnection is formed by a primary etching process that selectively removes the etch stop layer exposed by the first via hole. A chemical cleaning process is performed on the second via hole, wherein polymer is formed over the surface of the lower interconnection during the chemical cleaning process. The polymer is removed from the second via hole by a secondary etching process using vaporized gas.
摘要:
A method for cleaning a component in a substrate processing apparatus including a processing chamber, foreign materials being attached to the component, at least a part of the component being exposed inside the processing chamber, and the substrate processing apparatus being adapted to load and unload a foreign material adsorbing member into and from the processing chamber. The method includes loading the foreign material adsorbing member into the processing chamber; generating a plasma nearer the component than the foreign material adsorbing member; extinguishing the plasma; and unloading the foreign material adsorbing member from the processing chamber, wherein the generation and the extinguishment of the plasma are repeated alternately and the foreign material adsorbing member has a positive potential at least during the extinguishment of the plasma.
摘要:
An electromegasonic wafer cleaning system is disclosed that is extremely important, if not essential, in the fabrication of advanced microelectronic devices having a line width or feature size of from 0.05 to 0.10 micron. A unique synergistic combination is provided wherein piezoelectric transducer means are operated at a tolerable power level, such as from 1 to 2 watts per square centimeter, to minimize the risk of harm to the extremely delicate microcircuits and wherein the face of each wafer is negatively charged to a temperate voltage, such as from 5 to 20 volts, sufficient to cause effective removal of colloidal or sub 0.4-micron contaminant particles.This unique wafer cleaning system supersedes and replaces the standard megasonic-assisted RCA-type wet wafer cleaning systems which have never been able to eliminate or provide efficient purging of harmful sub 0.1-micron particles.
摘要:
Devices and methods of cleaning are described. The methods, and devices formed by the methods have a number of advantages. Embodiments are shown that include cleaning using a supercritical fluid. Advantages include a combination of both chemical and mechanical removal abilities from the supercritical fluid. Mechanical energy for cleaning is transmitted in a homogenous manner throughout a carrier fluid. The mechanical energy provided in methods shown also can also be used with delicate surface features.
摘要:
In a board cleaning method for dry cleaning of connection sites on resin-based boards, one or more gases selected from a group consisting of gas that contains a hydrogen element and gas that contains a fluorine element are supplied at least to the connection sites, plasma is generated from the supplied gas, and the boards are cleaned by radicals and ions that are produced by the generated plasma.
摘要:
Disclosed is a method of structuring a material surface by dry etching, so that a passivation layer soluble in a solvent forms by the dry etching on parts of the structured material surface, sealing the passivation layer with a substance soluble in the solvent, and removing the sealed passivation layer and the substance by means of the solvent.
摘要:
Method for recovering treated metal silicide surfaces or layers are provided. In at least one embodiment, a substrate having an at least partially oxidized metal silicide surface disposed thereon is cleaned to remove the oxidized regions to provide an altered metal silicide surface. The altered metal silicide surface is then exposed to one or more silicon-containing compounds at conditions sufficient to recover the metal silicide surface.
摘要:
A method of forming an iridium-containing film on a substrate, from an iridium-containing precursor thereof which is decomposable to deposit iridium on the substrate, by decomposing the precursor and depositing iridium on the substrate in an oxidizing ambient environment which may for example contain an oxidizing gas such as oxygen, ozone, air, and nitrogen oxide. Useful precursors include Lewis base stabilized Ir(I) β-diketonates and Lewis base stabilized Ir(I) β-ketoiminates. The iridium deposited on the substrate may then be etched for patterning an electrode, followed by depositing on the electrode a dielectric or ferroelectric material, for fabrication of thin film capacitor semiconductor devices such as DRAMs, FRAMs, hybrid systems, smart cards and communication systems.