Abstract:
In an electron-emitting device including, between electrodes, an electroconductive film having an electron emitting region, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher melting point than that of a material of the electroconductive film. Alternatively, the electroconductive film has a film formed in the electron emitting region and made primarily of a material having a higher temperature at which the material develops a vapor pressure of 1.3.times.10.sup.-3 Pa, than that of a material of the electroconductive film. A manufacturing method for an electron-emitting device includes a step of forming a film made primarily of a metal in the electron emitting region of the electroconductive film. The electron-emitting device has stable characteristics and improved efficiency of electron emission. An image-forming apparatus comprising the electron-emitting devices has high luminance and excellent stability in operation.
Abstract:
Semiconductor devices may be made by forming a silicided layer on a silicon material such as that used to form the extractor of a field emission display. The silicided layer may be self-aligned with the emitter of a field emission display. If the silicided layer is treated at a temperature above 1000.degree. C. by exposure to a nitrogen source, the silicide is resistant to subsequent chemical attack such as that involved in a buffered oxide etching process.
Abstract:
Display panels having at least one suspended fibrous cathode containing an electron field emitter are disclosed. The fibrous cathode is supported by a substrate (10) containing two sets of parallel rows of crests and valleys. The first set of parallel crests (11) and valleys (12) provide the valleys along which the fibrous cathode is aligned. The second set of parallel crests (13) and valleys (14) is perpendicular to the first set. The valleys (14) provide the means for suspending the fibrous cathode. The display panels can be produced in large sizes while still maintaining high quality and efficiency.
Abstract:
In an electron-emitting component with a cold cathode comprising a substrate and a cover layer with a diamond-containing material consisting of nano-crystalline diamond having a Raman spectrum with three lines, i.e. at K=1334.+-.4 cm.sup.-1 with a half-width value of 12.+-.6 cm.sup.-1, at K=1140.+-.20 cm.sup.-1 and at K=1470.+-.20 cm.sup.-1, the cold cathode exhibits a low extraction field strength, a stable emission at pressures below 10.sup.-4 mbar, a steep current-voltage characteristic and stable emission currents in excess of 1 microampere/mm.sup.2. The electron emission of the component demonstrates a long-time stability, and a constant intensity of the electron beam across its cross-section.
Abstract:
A rare earth hexaboride electron-emitting material of the formula ReB.sub.6+x, wherein Re is La, Ce or (La+Ce), and 0.05.ltoreq.x.ltoreq.0.20.
Abstract:
Semiconductor devices may be made by forming a silicided layer on a silicon material such as that used to form the extractor of a field emission display. The silicided layer may be self-aligned with the emitter of a field emission display. If the silicided layer is treated at a temperature above 1000.degree. C. by exposure to a nitrogen source, the silicide is resistant to subsequent chemical attack such as that involved in a buffered oxide etching process.
Abstract:
A liquid metal ion source for emitting P ions, wherein a Cu alloy which contains at most 25 at. % of P and if necessary, further contains Ag, C or Si, and/or B is melted and fed to an emitter tip so as to generate an ion beam under a high electric field.
Abstract:
Alloys suitable for use in liquid metal field ionization ion sources are provided. Such sources include an anode electrode for supporting an ion emitter comprising an alloy in the liquid state. The source further comprises means for generating an ionizing electric field and a reservoir for the liquid metal, ions of which are to be emitted by the source.The alloys are selected from the group consisting of (a) metal-metalloid alloys comprising about 10 to 30 atom percent of at least one metalloid element, the balance at least one transition metal element, (b) early transition-late transition alloys comprising about 30 to 85 atom percent of at least one early transition metal, the balance at least one late transition metal, and (c) Group II alloys comprising about 35 to 80 atom percent of at least one Group II element, the balance at least one metal element.Ions generated in liquid metal ion sources form a high brightness ion beam, which permits focusing a beam of emitted ions to a submicrometer spot. The ions may be used to alter material properties by ion implantation such as to dope semiconductors, to form ohmic contacts, to improve wear and corrosion resistance in metal surfaces and by sputter etching thin films such as metals, dielectrics and semiconductors.
Abstract:
Electrically conductive aerogel and methods of making the same are disclosed. A solution is provided. The solution is cured to form a polymer. The polymer is carbonized to form the conductive aerogel.