Abstract:
An aggregate turf filler for use with the turf of athletic fields and landscaped areas which comprise crushed silica sand particles (SiO2) which are substantially round in shape and are sized to be between 12 and 40 mesh. An acrylic based sealer covering the outer surface of each of the silica sand particles. Finally, providing that the silica sand particles have a smooth outer surface, possess an angle of repose of less than 30°, repel water, resist compacting, present no damaging sharp edges when incorporated with the turf and are environmentally safe.
Abstract:
An aggregate turf filler for use with the turf of athletic fields and landscaped areas which comprise crushed silica sand particles (SiO2) which are substantially round in shape and are sized to be between 12 and 40 mesh. An acrylic based sealer covering the outer surface of each of the silica sand particles. Finally, providing that the silica sand particles have a smooth outer surface, possess an angle of repose of less than 30°, repel water, resist compacting, present no damaging sharp edges when incorporated with the turf and are environmentally safe.
Abstract:
An artificial turf filament has a cross-section that includes a central area and two wing areas integral with said central area. Further a bundle of a plurality of artificial turf filaments is proposed, wherein the artificial turf filaments are held together by one or more wrapping filaments wrapped around said artificial turf filaments. The wrapping filaments cross each other at cross points, and are bonded, preferably releasable bonded, to one another at said cross points. Also the wrapping filaments are bonded, preferably releasable bonded, to said artificial turf filaments.
Abstract:
Artificial turf for use with an artificial turf system, which may also include a base layer and a support layer. The artificial turf comprising a backing supporting pile tufts of between ¼″ to 4″ in length, in position on its upper surface. The backing may comprise a porous synthetic foam or backing sheet. A filler of particles shaped to have no sharp edges and of substantially equal size are interspersed over the backing and about the tufts up to at least half thick length. The artificial turf substantially retains its resiliency, porosity and equal density throughout.
Abstract:
An aggregate turf filler for use with the turf of athletic fields and landscaped areas which comprise crushed silica sand particles (SiO2) which are substantially round in shape and are sized to be between 12 and 40 mesh. An acrylic based sealer covering the outer surface of each of the silica sand particles. Finally, providing that the silica sand particles have a smooth outer surface, possess an angle of repose of less than 30°, repel water, resist compacting, present no damaging sharp edges when incorporated with the turf and are environmentally safe.
Abstract:
A yarn for strands of an artificial turf ground cover, including a tape filament (4) having a core layer (8) and two outer layers (9) of a different material than the core layer (8), each on one of two opposite sides of the core layer. The core layer (8) contains at least polyester or polyolefin material, and the outer layers (9) contain high-density polyethylene. An artificial turf ground cover and a playing field including such a yarn and a method for producing such a yarn are also described. The high-density polyethylene has a relatively small coefficient of friction with the human skin and the yarn has a good shape recovery after deformation in spite of containing HDPE in outer layers.
Abstract:
The present invention pertains to cushioned flooring products. More particularly, the present invention pertains to cushioned carpet tiles and carpet and processes for making the same. The cushioned carpet tiles and carpet of the present invention comprise a modified secondary backing material having a scrim material and a non-woven fiber batt, where the non-woven fiber batt is made up of a plurality of fibers. The fibers of the non-woven fiber batt are needled into the scrim material so that the non-woven fiber batt is durably attached to the scrim material.
Abstract:
A method of making a mat with a textile surface and an elastomer backing is provided. The method includes mixing elastomer crumbs and a binder, depositing the crumb/binder mixture in a layer (22), placing a textile surface element (34) on the layer to form a mat assembly, and pressing the mat assembly in a press (9) while setting the binder. The elastomer crumbs are consolidated to form an elastomer backing (2) that includes voids between the elastomer crumbs, and the textile surface element is bonded to the elastomer backing to form the upper textile layer (1) of the mat.
Abstract:
A moisture-vapor-permeable and water-resistant fiber involves a layer of base fabric, a moisture-vapor-permeable layer, and a water absorption layer. The moisture vapor permeable layer is obtained by coating or laminating the inner side of the fabric with a moisture-vapor-permeable resin, which prohibits the penetration of the water droplets but allows the penetration of the moisture vapor molecules. The moisture absorption layer with intricate and colorful design is composed of binding resin blended with fiber powder and/or inorganic powder, and which is dot-coated or dot-printed onto the inner side of the moisture-vapor-permeable and water-resistant layer. The fiber powder or inorganic powder is highly hydrophilic and highly absorbent in its moisture absorption ability, which, when the clothes are fabricated, can prevent the penetration of raindrops but allows the transmission of the evaporated vapor of sweat through the fabric. Moreover, it is capable of absorbing plentiful amount of sweat.
Abstract:
A roofing underlayment having a slip-resistant surface includes a woven polypropylene scrim laminated to a top layer made from a non-woven spun-bond polypropylene fabric. During lamination, the scrim is bonded to the top layer by a polypropylene coating that impregnates the scrim, thereby forming a structural bottom layer comprising the polypropylene-impregnated scrim. The non-woven fibers of the top layer provide a micro-textured, slip-resistant surface. A second polypropylene coating may be applied to the bottom surface of the bottom structural layer. An adhesive layer may optionally be applied either to the bottom surface of the bottom structural layer, or, if used, to the bottom surface of the second polypropylene coating.