Abstract:
Mechanical quantities associated with a deformation force impacting a structure may be determined using one or more integrated computational elements. Methods for determining a mechanical quantity may comprise: optically interacting electromagnetic radiation with one or more integrated computational elements and a target area of a structure, the structure comprising a deformable material in an initial amount and a reference material in an initial amount within the target area; exposing the structure to a deformation force; determining a change in amount of the deformable material or the reference material within the target area, using the one or more integrated computational elements; and correlating the change in amount of the deformable material or the reference material within the target area to a mechanical quantity associated with the deformation force.
Abstract:
Inspection of microelectronic devices is described using near infrared light. In one example, a dielectric material layer on a substrate is illuminated with a near infrared light beam. The substrate has at least one contact land, the dielectric material layer overlies at least a portion of the contact land, and the substrate has at least one via defined in the dielectric material layer, the via exposing at least a portion of the contact land. Reflected near infrared light is reflected from the substrate at a camera. The position of the via is determined relative to the contact land from the reflected light beam using an image processing device.
Abstract:
The invention relates to a method for determining a transition point and/or for determining wall shear stresses on surfaces (1) around which surfaces a flow circulates by means of thermography, wherein the method comprises the following steps: providing a surface with a heat insulation layer (3) on the surface (1) around which a flow is to circulate, circulating a flow around the surface (1) around which a flow is to circulate, heating the surface (1) around which a flow circulates, contactless measuring of the emitted flow intensity of the surface (1) around which a flow circulates by means of a camera system (7), determining at least one temperature decay coefficient on the surface (1) around which a flow circulates and ascertaining the transition point and/or the wall shear stresses on the surface (1) around which a flow circulates.
Abstract:
An apparatus and method for measuring a contact pressure and a method of manufacturing the apparatus. The apparatus includes: a material layer configured to provide a light path along which incident light travels to a subject being in contact with the material layer; a spectrum analyzer configured to detect light emitted from the material layer and perform a light absorption spectrum analysis on the detected light to determine an intensity of the detected light; and a pressure calculator configured to determine the contact pressure of the subject based on the determined intensity.
Abstract:
A method and system for analysis of a viscoelastic response in a deformable material. The system includes a light source configured to provide linearly polarized light and a polariscope configured to receive said linearly polarized light and to generate an image associated with a viscoelastic response of said deformable material. The system also includes a machine vision system configured to operate on the image to locate the response on the deformable material and to classify the response as one of a plurality of predefined types of responses. A display may then be provide that is configured to provide feedback of the location of the viscoelastic response and classification of the response to a user of said system.
Abstract:
In a method for diagnosing and/or prognosis of cancers, diagnosing origin of tumor cells, optimizing cancer therapy, and screening active substances for oncology, the mechanical properties of tumor cells and reference cells are analyzed under mechanical load that causes linear or non-linear deformation of the loaded cell. The engineering strain of the cells caused by directed mechanical stress being introduced is used to determine metastasis risk and the presence of uncontrollably proliferating and/or invasive cells, or the origin of the tumor. The metastasis risk is determined based on the proportion of cells in the sample exhibiting engineering strain in a direction opposite to the stressing direction. The risk of the presence of uncontrollably proliferating cells for non-linear deformation of the cell is determined in the sample based on the mean value of the engineering strain in the direction of cell stressing.
Abstract:
Light from a light source device is polarized through a polarizer and is caused to impinge obliquely onto an object to be inspected. The resulting scattered light is received by a CCD imaging device having an element for separating scattered polarized light disposed in a dark field. Component light intensities are worked out for an obtained P-polarized component image and an obtained S-polarized component image and a polarization direction is determined as a ratio of them. The component light intensities and the polarization directions are determined from images obtained by imaging of the light scattering entities in a state where static stress is not applied to the object to the inspected and in a state where static load is applied thereto so as to generate tensional stress on the side irradiated by light. The component light intensities and the polarization directions are compared with predetermined threshold values.
Abstract:
Prism coupling systems and methods for characterizing curved parts are disclosed. A coupling surface of a coupling prism is interfaced to the curved outer surface of the curved part to define a coupling interface. Measurement light is directed through the coupling prism and to the interface, wherein the measurement light has a width of 3 mm or less. TE and TM mode spectra reflected from the interface are digitally captured. These mode spectra are processed to determine at least one characteristic of the curved part, such as the stress profile, compressive stress, depth of layer, refractive index profile and birefringence.
Abstract:
To measure contact pressure of each of a plurality of small protrusions arranged at a narrow pitch and contacting a flat surface, provided is a contact pressure detection apparatus comprising a sensor section that is contacted by a target and has pressure applied thereto by the target; a light source section that radiates light with a wavelength causing Raman scattering in the sensor section to which the pressure is applied; and a detecting section that receives light from the sensor section and detects the pressure between the sensor section and the target. Also provided is a contact point pressure measurement apparatus that measures contact pressure of an electrode of a device under test, comprising: a fixing section that has the device under test mounted thereon and fixes the electrode of the device under test in a manner to press against the sensor section; and the contact pressure detection apparatus.
Abstract:
Methods of capturing improved-contrast mode spectra of a double ion-exchanged (DIOX) glass sample using prism coupling of index np. The DIOX glass sample has a refractive index profile with a first region adjacent the surface that satisfies 0.0005≦π/n dn/dx|≦