Abstract:
A nonvolatile memory element (20) of the present invention comprises a resistance variable element (14) and a diode (18) which are formed on a substrate (10) such that the resistance variable element (14) has a resistance variable layer (11) sandwiched between a lower electrode (12) and an upper electrode (13), and the diode (18) which is connected in series with the resistance variable element (14) in the laminating direction and has an insulating layer or semiconductor layer (15) sandwiched between a first electrode (16) at the lower side and a second electrode (17) at the upper side. The resistance variable layer (11) is embedded in a first contact hole (21) formed on the lower electrode (12). A first area (22) where insulating layer or semiconductor layer (15) of the diode (18) is in contact with a first electrode (16) of the diode (18) is larger than at least one of a second area (23) where the resistance variable layer (11) is in contact with the upper electrode (13) and a third area (24) where the resistance variable layer (11) is in contact with the lower electrode (12).
Abstract:
A nonvolatile memory element of the present invention comprises a first electrode (103), a second electrode (105), and a resistance variable layer (104) disposed between the first electrode (103) and the second electrode (104), a resistance value of the resistance variable layer varying reversibly according to an electric signal applied between the electrodes (103),(105), and the resistance variable layer (104) comprises at least a tantalum oxide, and is configured to satisfy 0
Abstract:
A semiconductor device according to this invention includes: a first insulating layer (11); a first body section (13) including an island-shaped semiconductor formed on the first insulating layer; a second body section (14) including an island-shaped semiconductor formed on the first insulating layer; a ridge-shaped connecting section (15) formed on the first insulating layer to interconnect the first body section and the second body section; a channel region (15a) formed by at least a part of the connecting section in lengthwise direction of the connecting section; a gate electrode (18) formed to cover a periphery of the channel region, with a second insulating layer intervening therebetween; a source region formed to extend over the first body section and a portion of the connecting section between the first body section and the channel region; and a drain region formed to extend over the second body section and a portion of the connecting section between the second body section and the channel region, wherein a semiconductor forming the channel region has a lattice strain.
Abstract:
An object is to accurately measure the Stokes parameters, without the occurrence of polarization fluctuations or PDL during the splitting of the incident light. When the incident light is made incident on a first-stage prism, the light is split into two first splitting light rays. Next, the first split light rays are respectively incident on a pair of prisms of a second stage. Each of the pair of first split light rays is split into two rays by a second-stage prism, to obtain four second split light rays.
Abstract:
A semiconductor device according to the present invention, which comprises a MISFET, has a semiconductor layer (3) having a recessed portion (101) formed in the surface thereof, the recessed portion (101) having an opening the outer circumference of which is closed, a gate insulating film (13) formed so as to cover at least the inner face of the recessed portion (3), a gate electrode (14) filling the recessed portion (101) such that the gate insulating film (13) is interposed between the gate electrode (14) and the inner face of the recessed portion (101), and a pair of source/drains (102), located on both sides of the gate electrode (14) when viewed in plan and formed to a predetermined depth from the surface of the semiconductor layer (3).
Abstract:
A semiconductor device of this invention includes: a semiconductor substrate; a gate electrode formed on the semiconductor substrate; a pair of source and drain electrodes respectively formed in regions of the semiconductor substrate situated on opposite sides of the gate electrode in a plan view; and a germanium-containing channel layer situated below the gate electrode to sandwich an gate insulator therebetween and intervening between the pair of source and drain electrodes, wherein a silicide layer forming at least a part of the source and drain electrodes has a lower germanium concentration than the channel layer.
Abstract:
A semiconductor integrated circuit fabrication method according to this invention includes: a step of forming a pair of first device forming regions and a pair of second device forming regions in a surface layer portion of a semiconductor substrate by surrounding each of the regions by device isolation; a step of forming a first oxide film covering the surface of the semiconductor substrate after the preceding step; a step of removing an intended portion of the first oxide film to expose the pair of second device forming regions; a step of forming a pair of heterojunction structures, by selective epitaxial growth, on the pair of second device forming regions thus exposed; a step of forming a second oxide film covering the surface of the substrate after the preceding step; and a step of forming a pair of gate electrodes above each of the pair of first device forming regions and the pair of second device forming regions, whereby a normal complementary MOS transistor and a heterojunction complementary MOS transistor are eventually formed in the pair of first device forming regions and the pair of second device forming regions, respectively.
Abstract:
A semiconductor integrated circuit fabrication method according to this invention includes: a step of forming a pair of first device forming regions and a pair of second device forming regions in a surface layer portion of a semiconductor substrate by surrounding each of the regions by device isolation; a step of forming a first oxide film covering the surface of the semiconductor substrate after the preceding step; a step of removing an intended portion of the first oxide film to expose the pair of second device forming regions; a step of forming a pair of heterojunction structures, by selective epitaxial growth, on the pair of second device forming regions thus exposed; a step of forming a second oxide film covering the surface of the substrate after the preceding step; and a step of forming a pair of gate electrodes above each of the pair of first device forming regions and the pair of second device forming regions, whereby a normal complementary MOS transistor and a heterojunction complementary MOS transistor are eventually formed in the pair of first device forming regions and the pair of second device forming regions, respectively.
Abstract:
A semiconductor device and a method of fabricating the same according to this invention are such that: a gate insulator is formed over a predetermined region of a semiconductor substrate; a gate electrode is formed on the gate insulator; source and drain regions respectively formed in portions of the predetermined region that are situated on both sides of the gate electrode in plan view; a body region formed by a region of the predetermined region exclusive of the source and drain regions; and a contact electrically interconnecting the gate electrode and the body region, wherein a portion of the contact which is connected to the gate electrode is formed to intersect the gate electrode in plan view.
Abstract:
A MISFET according to this invention includes: a substrate having a semiconductor layer; an active region formed in the semiconductor layer; a gate insulator formed on the active region; a gate formed on the gate insulator; and a source region and a drain region, wherein: the active region is formed, in plan view, to have a body portion and a projecting portion projecting from a periphery of the body portion; the gate is formed, in plan view, to intersect the body portion of the active region, cover a pair of connecting portions connecting a periphery of the projecting portion to the periphery of the body portion and allow a part of the projecting portion to project from a periphery of the gate; and the source region and the drain region are formed in regions of the body portion of the active region which are situated on opposite sides of the gate in plan view, respectively.