Abstract:
A reduced-weight container or vessel for storage, transportation and processing gases and liquids under pressure has a plurality of hollows formed in the outer wall, resulting in a reduced weight without compromising the structural integrity.
Abstract:
A cryogenic storage tank comprises a partition that divides a cryogen space into a main storage space and an auxiliary space. A valve disposed inside the cryogen space is associated with a first fluid passage through the partition. The valve comprises a valve member that is actuatable by fluid forces within the cryogen space. A second fluid passage through the partition comprises a restricted flow area that is dimensioned to have a cross-sectional flow area that is smaller than that of a fill conduit such that there is a detectable increase in back-pressure when the main storage space is filled with liquefied gas.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Disclosed is a liquid container adapted to store liquefied natural gas (LNG). The LNG storage container include a sealing wall directly contacting liquid contained in the tank and a structural wall, which is an exterior wall or inner structure integrated with the exterior wall. The container further includes a plurality of connectors mechanically connecting the sealing wall and the structural wall and an intermediate wall structure positioned between the structural wall and the interior wall. The intermediate wall structure is configured to move relative to at least one of the interior wall and the structural wall.
Abstract:
A tubular metal body 1 comprises a tube 2 extruded through a porthole die and composed of a plurality of components 2b joined to one another with a plurality of joint portions 2a extending over the entire length of the tube. The base material metal of the extruded tube 2 in each of the joint portions 2a is subjected to a modifying treatment to produce finely divided crystal grains. The modifying treatment for the extruded tube 2 is conducted preferably by frictionally agitating each joint portion using a probe 8 of a friction agitation joining tool 6. The tubular metal body 1 is available with an increased length in a larger size and has high pressure resistance.
Abstract:
A cellular reservoir flexible pressure vessel is formed as a series of closely packed tubes fitted into a pair of opposing end caps. The end caps have individual receptacles sized and shaped to receive the tube ends that are secured with adhesive or radio frequency welding. At least one end cap has a passageway for connection of the vessel. The flexible pressure vessel has a pressure relief device comprising a reduction in thickness of one end cap at a predetermined location. When subjected to overpressure it fails at the predetermined location. Other pressure relief devices include: a projecting member on the vessel surface, a weakened section of the passageway, a weakening or an absence of braiding material or hoop winding at a predetermined location on the vessel surface or along the passageway, a weakening or spreading of fibers in either the reinforcing panels or the flexible blankets covering the vessel.
Abstract:
Disclosed is a liquid container adapted to store liquefied natural gas (LNG). The LNG storage container include a sealing wall directly contacting liquid contained in the tank and a structural wall, which is an exterior wall or inner structure integrated with the exterior wall. The container further includes a plurality of connectors mechanically connecting the sealing wall and the structural wall and an intermediate wall structure positioned between the structural wall and the interior wall. The intermediate wall structure is configured to move relative to at least one of the interior wall and the structural wall
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision.
Abstract:
Described herein is a portable storage device that stores a hydrogen fuel source. The storage device includes a bladder that contains the hydrogen fuel source and conforms to the volume of the hydrogen fuel source. A housing provides mechanical protection for the bladder. The storage device also includes a connector that interfaces with a mating connector to permit transfer of the fuel source between the bladder and a device that includes the mating connector. The device may be a portable electronics device such as a laptop computer. Refillable hydrogen fuel source storage devices and systems are also described. The refillable system comprises a hydrogen fuel source refiner that includes the mating connector and provides the hydrogen fuel source to the storage device. Hot swappable fuel storage systems described herein allow a portable hydrogen fuel source storage device to be removed from a fuel processor or electronics device it provides the hydrogen fuel source to, without shutting down the receiving device or without compromising hydrogen fuel source provision to the receiving device for a limited time.
Abstract:
The present invention relates to a pressurized package and a method for manufacturing and filling a pressurized package. The pressurized package has an outer container (10) and an inner container (20) situated within the outer container (10). In the outer container (10) a chamber (11) for material (12) to be dispensed is arranged and in the inner container (20) a propellant chamber (21) for propellant (20) is arranged, which are separated from each other in a manner that is impermeable to liquid and gas. The outer container (10) is closed by a cover part (15) on which a valve part (16) is arranged for dispensing the material (12) from the chamber (11) outwards. To improve pressurized packages of this type, a pressurized cartridge (30) containing a propellant (22) is arranged in the inner container (20), and the pressurized cartridge is associated with an opening mechanism (31) for at least one-time opening of the pressurized cartridge (30) to the propellant chamber (21) of the inner container (20). The opening mechanism (31) reacts to filling of the chamber (11) with material (12) to be dispensed.