Abstract:
A variety of field emission devices and structures which employ non-substrate layers of single-crystal silicon. By employing non-substrate layers of single-crystal silicon, improved emission control is achieved and improved performance controlling devices are formed within the device structure.
Abstract:
An integrally controlled field emission display device (FED display) is set forth wherein at least a first controller, realized generally as a transistor device, is disposed in/on at least a layer of the FED display and is operably connected to at least one element of the field emission devices of the FED display. A plurality of integrally formed controllers may be selectively interconnected to provide selective control of groups of FEDs of the FED display in a manner that provides for integrated active addressing of the FED display.
Abstract:
A field emission cathode capable of permitting a voltage required for starting emission of electrons from the emitters to be decreased and the emission to be rendered uniform. The field emission cathode includes cathode electrodes formed on a substrate. On each of the cathode electrodes are arranged a plurality of emitters through diodes each acting as a constant-current element, and gate electrodes are arranged above the emitters. Arrangement of the diodes between the emitters and the cathode electrode permits a drive voltage to be reduced as compared with arrangement of a resistive layer therebetween, because a diode is generally decreased in voltage drop as compared with the resistive layer. Also, the arrangement renders emission of electrons from each of the emitters uniform.
Abstract:
A cold cathode field emission device that includes a ballast resistor (202, 303, 402) integrally formed therewith and coupled to the emitter (204, 302, 403) to allow appropriate compensation for manufacturing and performance variations in field emission from the attached emitter.
Abstract:
A field emission device having a diamond semiconductor electron emitter with an exposed surface exhibiting a low/negative electron affinity which is operably controlled by modulation of a junction depletion region. Application of a suitable operating voltage to a device gate electrode modulates the depletion width to control availability of electrons transiting the bulk of the electron emitter for emission at the exposed surface.
Abstract:
An electron source is formed by at least one elementary electron emitter in which an emissive point having a very small radius of curvature operates on the field emission principle and produces an electron beam, the intensity of which is independent of any possible variations of electron emission. The emissive point cooperates with an extracting electrode, and a control electrode having a negative potential with respect to the extracting electrode is placed downstream of the extracting electrode with respect to the direction of propagation of the beam.
Abstract:
Method and apparatus for the transmission of images to a screen, wherein luminescence centers of the screen are excited by way of electron beams controlled to suit the image to be transmitted. The electrons are emitted by cathode tips of a thin-film field-effect cathode. The cathode tips are driven individually, the flow of electrons emitted from each cathode tip corresponding to the grey tone for each image point. The cathode tips may be driven by mutually intersecting conducting strips to which are fed successive trigger pulses. In another version, the cathode tips are driven by the use of charge transfer systems, which enable a still picture to be produced by concurrently driving the cathode tips in their entirety.
Abstract:
Vacuum devices incorporate electron or field forming sources formed by a cellular array of emission sites. The sources comprise a metal/insulator/metal film sandwich on a substrate with a cellular array of holes through the upper metal and insulator, leaving the edges of the upper metal electrode effectively exposed to the upper surface of the lower metal electrode. Sharp protuberances directed toward the upper electrode and constituting emitter tips of controlled configurations are formed on the exposed area of the lower electrode. A method of forming the structure includes starting with the metal/insulator/metal film sandwich having the cellular array of holes already formed and directing permanent electrode material into the cellular array of holes and masking or subsequently removable material onto the surface surrounding the holes whereby an individual sharp cone-like emitter is formed within each of the holes in the cellular array. Vacuum devices are formed from such structures. For example, a diode is formed either by making the masking material over each emission site an electrode or by removing the masking material and applying a conductive electrode material over each emission site.
Abstract:
A system and method for addressing individual electron emitters in an emitter array is disclosed. The system includes an emitter array comprising a plurality of emitter elements arranged in a non-rectangular layout and configured to generate at least one electron beam and a plurality of extraction grids positioned adjacent to the emitter array, each extraction grid being associated with at least one emitter element to extract the at least one electron beam therefrom. The field emitter array system also includes a plurality of voltage control channels connected to the plurality of emitter elements and the plurality of extraction grids such that each of the emitter elements and each of the extraction grids is individually addressable. In the field emitter array system, the number of voltage control channels is equal to the sum of a pair of integers closest in value whose product equals the number of emitter elements.
Abstract:
The present invention provides an image display capable of enhancing a production yield. The image display comprises a display device including a first plate which has a plurality of electron-emitter elements each having a structure comprised of a base electrode, an insulating layer and a top electrode stacked on one another in this order, the electron-emitter element emitting electrons from the surface of the top electrode when a voltage of positive polarity is applied to the top electrode; a plurality of first electrodes for respectively applying driving voltages to the base electrodes of the electron-emitter elements lying in a row (or column) direction; and a plurality of second electrodes for respectively applying driving voltages to the top electrodes of the electron-emitter elements lying in the column (or row) direction, a frame component, and a second plate having phosphors, wherein a space surrounded by the first plate, the frame component and the second plate is brought into vacuum. In the display apparatus, the at least one electron-emitter element includes the base electrode and the top electrode, at least one of which is connected to the first electrode or the second electrode through a resistor element.