Semi-floating gate FET
    211.
    发明授权

    公开(公告)号:US10741698B2

    公开(公告)日:2020-08-11

    申请号:US16355398

    申请日:2019-03-15

    Abstract: A semi-floating gate transistor is implemented as a vertical FET built on a silicon substrate, wherein the source, drain, and channel are vertically aligned, on top of one another. Current flow between the source and the drain is influenced by a control gate and a semi-floating gate. Front side contacts can be made to each one of the source, drain, and control gate terminals of the vertical semi-floating gate transistor. The vertical semi-floating gate FET further includes a vertical tunneling FET and a vertical diode. Fabrication of the vertical semi-floating gate FET is compatible with conventional CMOS manufacturing processes, including a replacement metal gate process. Low-power operation allows the vertical semi-floating gate FET to provide a high current density compared with conventional planar devices.

    Integrated cantilever switch
    212.
    发明授权

    公开(公告)号:US10411140B2

    公开(公告)日:2019-09-10

    申请号:US15892028

    申请日:2018-02-08

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    High density resistive random access memory (RRAM)

    公开(公告)号:US10211257B2

    公开(公告)日:2019-02-19

    申请号:US15829397

    申请日:2017-12-01

    Abstract: A memory cell includes a substrate layer, with a plurality of silicided semiconductor fins stacked on the substrate layer and spaced apart from one another. A first metal liner layer is stacked on the plurality of silicided semiconductor fins and on the substrate layer. A plurality of first contact pillars are stacked on the first metal liner layer adjacent a different respective one of the plurality of silicided semiconductor fins. A configurable resistance structure covers portions of the first metal liner layer that are stacked on the substrate layer and portions of the first metal liner layer that are stacked on each of the plurality of silicided semiconductor fins. A metal fill layer is stacked on the configurable resistance structure. A plurality of second contact pillars is stacked on the metal fill layer adjacent a space between a different pair of adjacent silicided semiconductor fins of the plurality thereof.

    Facet-free strained silicon transistor

    公开(公告)号:US10134899B2

    公开(公告)日:2018-11-20

    申请号:US14983070

    申请日:2015-12-29

    Abstract: The presence of a facet or a void in an epitaxially grown crystal indicates that crystal growth has been interrupted by defects or by certain material boundaries. Faceting can be suppressed during epitaxial growth of silicon compounds that form source and drain regions of strained silicon transistors. It has been observed that faceting can occur when epitaxial layers of certain silicon compounds are grown adjacent to an oxide boundary, but faceting does not occur when the epitaxial layer is grown adjacent to a silicon boundary or adjacent to a nitride boundary. Because epitaxial growth of silicon compounds is often necessary in the vicinity of isolation trenches that are filled with oxide, techniques for suppression of faceting in these areas are of particular interest. One such technique, presented herein, is to line the isolation trenches with SiN to provide a barrier between the oxide and the region in which epitaxial growth is intended.

    Vertical junction FinFET device and method for manufacture

    公开(公告)号:US10103252B2

    公开(公告)日:2018-10-16

    申请号:US15361935

    申请日:2016-11-28

    Abstract: A vertical junction field effect transistor (JFET) is supported by a semiconductor substrate that includes a source region within the semiconductor substrate doped with a first conductivity-type dopant. A fin of semiconductor material doped with the first conductivity-type dopant has a first end in contact with the source region and further includes a second end and sidewalls between the first and second ends. A drain region is formed of first epitaxial material grown from the second end of the fin and doped with the first conductivity-type dopant. A gate structure is formed of second epitaxial material grown from the sidewalls of the fin and doped with a second conductivity-type dopant.

    High density resistive random access memory (RRAM)

    公开(公告)号:US09865653B2

    公开(公告)日:2018-01-09

    申请号:US15293998

    申请日:2016-10-14

    Abstract: A memory cell includes a substrate layer, with a plurality of silicided semiconductor fins stacked on the substrate layer and spaced apart from one another. A first metal liner layer is stacked on the plurality of silicided semiconductor fins and on the substrate layer. A plurality of first contact pillars are stacked on the first metal liner layer adjacent a different respective one of the plurality of silicided semiconductor fins. A configurable resistance structure covers portions of the first metal liner layer that are stacked on the substrate layer and portions of the first metal liner layer that are stacked on each of the plurality of silicided semiconductor fins. A metal fill layer is stacked on the configurable resistance structure. A plurality of second contact pillars ism stacked on the metal fill layer adjacent a space between a different pair of adjacent silicided semiconductor fins of the plurality thereof.

Patent Agency Ranking