Abstract:
Electronic displays encounter visibility issues due to varying ambient light conditions. An ambient light sensor can be provided to sense ambient light and dynamically adjust display brightness to compensate for changes in ambient light. A wave guide for improving angular response in a light sensor is provided.
Abstract:
A light detecting device includes a case, a light introducing member and a light receiving element. A predetermined light is incident into an inlet face of the introducing member, and an outlet face of the introducing member emits the light incident into the inlet face. A first distance is defined between a top point of the outlet face and a focus of the introducing member, and a second distance is defined between the top point of the outlet face and a light receiving face of the receiving element. The outlet face has a convex lens shape in a manner that the first distance is smaller than the second distance.
Abstract:
There is provided a light receiving device including a polarization dispersing section that disperses a polarization direction of incoming light into a plurality of polarization directions, a light collecting section that has a metal pattern shaped like concentric circles on a surface thereof, where the light collecting section collects light that has passed through the polarization dispersing section, and a light receiving section that receives the light collected by the light collecting section. Also provided are a light receiving device manufacturing method and a light receiving method. The light collecting section may have a surface plasmon antenna that has the metal pattern shaped like the concentric circles on a surface thereof, and the light receiving section may receive the light collected toward a center of the concentric circles of the metal pattern of the light collecting section, through a hole at the center of the concentric circles, on a rear side of the light collecting section.
Abstract:
Disclosed is an optical structure formed in an upper side of a semiconductor photomultiplier having a plurality of microcells. The optical structure includes: a first dielectric body formed in an upper side of a dead area between light receiving areas of the respective microcells and having a cross-sectional structure in which a lower side is wider than an upper side; and a second dielectric body formed in the upper side of the light receiving area of each microcell and having a cross-sectional structure in which a lower side is narrower than an upper side, and a refractive index of the second dielectric body is higher than that of the first dielectric body.
Abstract:
An interrogator for a plurality of sensor fiber optic gratings. The interrogator includes a broadband optical source; at least one beam splitter directing output of the optical source to the sensor fiber optic gratings; at least one linear filter for converting changes in peak reflection wavelength to changes in intensity; at least one optical receiver; and at least one amplifier associated with each optical receiver. The interrogator also includes, alternatively, a driver/modulator for the optical source providing on/off pulses; an analog integrator following the at least one amplifier; or a mechanism compensating for masking of one sensor fiber optic grating by another.
Abstract:
Systems and methods are provided for detecting ambient light with reduced sensitivity to infrared sources. An electronic device may include an infrared sensor, an ambient light sensor, a decoder, and a processor. The infrared sensor may detect an intensity of infrared light. The ambient light sensor may be configured to detect incident light and to generate an electronic signal indicative of an intensity of visible light. The decoder may be configured to receive the intensity of infrared light and to generate an intensity of decoded infrared light. The processor, which may be coupled to the decoder and the ambient light sensor, may be configured to substitute an alternate electronic signal for the electronic signal if the intensity of infrared light exceeds a threshold amount.
Abstract:
An electromagnetic black hole may be fabricated as concentric shells having a permittivity whose variation is at least as great as an inverse square dependence on the radius of the structure. Such a structure concentrates electromagnetic energy incident thereon over a broad range of angles to an operational region near the center of curvature of the structure. Devices or materials may be placed in the operational region so as to convert the electromagnetic energy to electrical signals or to heat. Applications included solar energy harvesting and heat signature detectors.
Abstract:
Demultiplexing systems and methods are discussed which may be small and accurate without moving parts. In some cases, demultiplexing embodiments may include optical filter cavities that include filter baffles and support baffles which may be configured to minimize stray light signal detection and crosstalk. Some of the demultiplexing assembly embodiments may also be configured to efficiently detect U.V. light signals and at least partially compensate for variations in detector responsivity as a function of light signal wavelength.
Abstract:
The present invention relates to light sensors for measuring light characteristics. In particular, the present invention relates to a light directionality sensor that is capable of measuring light characteristics such as the light direction, light collimation, and light distribution. According to a first aspect of the present invention there is provided a light directionality sensor comprising a photo-sensor (2), comprising a plurality of photo-sensitive elements (3), and a plurality of light-absorbing light selecting structures (1) arranged on the photo-sensor so as to form an array of light-absorbing light selecting structures. In the array of light-absorbing light selecting structures, a succession of at least some of the light-absorbing light selecting structures has varying structural characteristics. The varying structural characteristics is achieved by each individual structure of the succession being formed such that it allows light within a different angle interval with respect to the array to be sensed. Further, according to a second aspect of the invention, there is provided a method for forming a light sensor according to the first aspect of the present invention.
Abstract:
A light sensor device comprises a substrate (10) having a well (12) defined in one surface. At least one light sensor (14) is formed at the base of the well (12), and an optical light guide (18) in the form of a transparent tunnel (18) within an opaque body (20) extends from a top surface of the device down a sloped side wall of the well (12) to the location of the light sensor (14).