Abstract:
Provided are a photomultiplier and a manufacturing method thereof. The manufacturing method thereof may include forming a mask layer on an active region of a substrate doped with a first conductive type, ion implanting a second conductive type impurity opposite to the first conductive type into the substrate to form a first doped region in the active region under the mask layer and an non-active region exposed from the mask layer, forming a device isolation layer on the non-active region, removing the mask layer, and ion implanting the second conductive type impurity having a concentration higher than that of the first doped region into an upper portion of the first doped region in the active region to form a second doped region shallower than the first doped region.
Abstract:
Provided are a silicon photomultiplier and method for fabricating silicon photomultiplier. The silicon photomultiplier includes a first conductive type semiconductor layer; a first conductive type buried layer disposed in a lower portion of the first conductive type semiconductor layer, and having a higher impurity concentration than the first conductive type semiconductor layer; quench resistors spaced from each other and disposed on the first conductive type semiconductor layer; a transparent insulator formed on the first conductive type semiconductor layer, and exposing the quench resistors; second conductive type doped layers disposed under the quench resistors to contact the first conductive type semiconductor layer; and a transparent electrode commonly connected to the quench resistors electrically.
Abstract:
Disclosed is an optical structure formed in an upper side of a semiconductor photomultiplier having a plurality of microcells. The optical structure includes: a first dielectric body formed in an upper side of a dead area between light receiving areas of the respective microcells and having a cross-sectional structure in which a lower side is wider than an upper side; and a second dielectric body formed in the upper side of the light receiving area of each microcell and having a cross-sectional structure in which a lower side is narrower than an upper side, and a refractive index of the second dielectric body is higher than that of the first dielectric body.
Abstract:
Disclosed is an optical structure formed in an upper side of a semiconductor photomultiplier having a plurality of microcells. The optical structure includes: a first dielectric body formed in an upper side of a dead area between light receiving areas of the respective microcells and having a cross-sectional structure in which a lower side is wider than an upper side; and a second dielectric body formed in the upper side of the light receiving area of each microcell and having a cross-sectional structure in which a lower side is narrower than an upper side, and a refractive index of the second dielectric body is higher than that of the first dielectric body.
Abstract:
Provided is a photodetector in which a transparent nonconductive material having an interface charge and a trapped charge is deposited on a semiconductor surface so as to form a depletion region on the surface of the semiconductor, and the depletion region is employed as an optical detecting region, thereby not only improving detection with respect to light having a wavelength of ultraviolet and blue ranges but also filtering light having a wavelength of visible and infrared ranges, and in which a fabricating process thereof is compatible with a universal silicon CMOS process.
Abstract:
Provided is a method of manufacturing a hollow microneedle structure. The method includes coating a hollow core having a predetermined section and being long in a lengthwise direction with a coating solution, and solidifying the coating solution to form a coating layer, depositing a metal seed layer on the coating layer, plating the seed metal layer with a metal to form a plated layer, cutting the hollow core having the plated layer at an inclination angle with respect to the lengthwise direction for form a surface inclination, and removing the hollow core and the coating layer to form a hollow microneedle structure. Thus, the hollow microneedle structure can be manufactured to have such diameter, length, hardness, and inclination angle as to minimize pain. By use of the hollow core, the microneedle structure can have vertical microneedles with a uniform inner diameter.
Abstract:
Provided is a method of manufacturing a hollow microneedle structure. The method includes coating a hollow core having a predetermined section and being long in a lengthwise direction with a coating solution, and solidifying the coating solution to form a coating layer, depositing a metal seed layer on the coating layer, plating the seed metal layer with a metal to form a plated layer, cutting the hollow core having the plated layer at an inclination angle with respect to the lengthwise direction to form a surface inclination, and removing the hollow core and the coating layer to form a hollow. Thus, the hollow microneedle structure can be manufactured to have such diameter, length, hardness, and inclination angle as to minimize pain. By use of the hollow core, the microneedle structure can have vertical microneedles with a uniform inner diameter.
Abstract:
Provided is a method of fabricating a T-type gate including the steps of: forming a first photoresist layer, a blocking layer and a second photoresist layer to a predetermined thickness on a substrate, respectively; forming a body pattern of a T-type gate on the second photoresist layer and the blocking layer; exposing a predetermined portion of the second photoresist layer to form a head pattern of the T-type gate, and performing a heat treatment process to generate cross linking at a predetermined region of the second photoresist layer except for the head pattern of the T-type gate; performing an exposure process on an entire surface of the resultant structure, and then removing the exposed portion; and forming a metal layer of a predetermined thickness on an entire surface of the resultant structure, and then removing the first photoresist layer, the blocking layer, the predetermined region of the second photoresist layer in which the cross linking are generated, and the metal layer, whereby it is possible to readily perform a compound semiconductor device manufacturing process, and to reduce manufacturing cost by means of the increase of manufacturing yield and the simplification of manufacturing processes.
Abstract:
A complementary metal-oxide semiconductor (CMOS)-based planar type avalanche photo diode (APD) using a silicon epitaxial layer and a method of manufacturing the APD, the photo diode including: a substrate; a well layer of a first conductivity type formed in the substrate; an avalanche embedded junction formed in the well layer of the first conductivity type by low energy ion implantation; the silicon epitaxial layer formed in the avalanche embedded junction; a doping area of a second conductivity type opposite to the first conductive type, formed from a portion of a surface of the well layer of the first conductivity type in the avalanche embedded junction and forming a p-n junction; positive and negative electrodes formed on the doping area of the second conductivity type and the well layer of the first conductivity type separated from the doping area of the second conductivity type, respectively; and an oxide layer formed on an overall surface excluding a window where the positive and negative electrodes are formed.
Abstract:
A BJT (bipolar junction transistor)-based uncooled IR sensor and a manufacturing method thereof are provided. The BJT-based uncooled IR sensor includes: a substrate; at least one BJT which is formed to be floated apart from the substrate; and a heat absorption layer which is formed on an upper surface of the at least one BJT, wherein the BJT changes an output value according heat absorbed through the heat absorption layer. Accordingly, it is possible to provide a BJT-based uncooled IR sensor capable of being implemented through a CMOS compatible process and obtaining more excellent temperature change detection characteristics.