Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
According to an embodiment, a micro-fabricated test structure includes a structure mechanically coupled between two rigid anchors and disposed above a substrate. The structure is released from the substrate and includes a test layer mechanically coupled between the two rigid anchors. The test layer includes a first region having a first cross-sectional area and a constricted region having a second cross-sectional area smaller than the first cross-sectional area. The structure also includes a first tensile stressed layer disposed on a surface of the test layer adjacent the first region.
Abstract:
A sound transducer includes a substrate with a cavity with extending from a first surface of the substrate, a body at least partially covering the cavity and being connected to the substrate by at least one resilient hinge, a first set of comb fingers mounted to the substrate, and a second set of comb fingers mounted to the body. The first set of comb fingers and the second set of comb fingers are interdigitated and configured to create an electrostatic force driving the body in a direction perpendicular to the first surface of the substrate. The body and the at least one resilient hinge are configured for a resonant or a near-resonant excitation by the electrostatic force.
Abstract:
According to an embodiment, a method of operating a microelectromechanical systems (MEMS) transducer that has a membrane includes transducing between out-of-plane deflection of the membrane and voltage on a first pair of electrostatic drive electrodes using the first pair of electrostatic drive electrodes. The first pair of electrostatic drive electrodes is formed on the membrane extending in an out-of-plane direction and form a variable capacitance between the first pair of electrostatic drive electrodes.
Abstract:
A MEMS structure and a method for operation a MEMS structure are disclosed. In accordance with an embodiment of the present invention, a MEMS structure comprises a substrate, a backplate, and a membrane comprising a first region and a second region, wherein the first region is configured to sense a signal and the second region is configured to adjust a threshold frequency from a first value to a second value, and wherein the backplate and the membrane are mechanically connected to the substrate.
Abstract:
According to various embodiments, a dynamic pressure sensor includes a substrate, a reference volume formed in the substrate, a deflectable membrane sealing the reference volume, a deflection sensing element coupled to the membrane and configured to measure a deflection of the membrane, and a ventilation hole configured to equalize an absolute pressure inside the reference volume with an absolute ambient pressure outside the reference volume.
Abstract:
A MEMS acoustic transducer includes a substrate having a cavity therethrough, and a conductive back plate unit including a plurality of conductive perforated back plate portions which extend over the substrate cavity. A dielectric spacer arranged on the back plate unit between adjacent conductive perforated back plate portions, and one or more graphene membranes are supported by the dielectric spacer and extend over the conductive perforated back plate portions.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a sacrificial layer over a first surface of a workpiece having the first surface and an opposite second surface. A membrane is formed over the sacrificial layer. A through hole is etched through the workpiece from the second surface to expose a surface of the sacrificial layer. At least a portion of the sacrificial layer is removed from the second surface to form a cavity under the membrane. The cavity is aligned with the membrane.
Abstract:
A transducer structure including a carrier with an opening and a suspended structure mounted on the carrier which extends at least partially over the opening in the carrier is disclosed. The transducer structure may further include configuring the suspended structure to provide an electrostatic field between the suspended structure and the carrier by changing a distance between the suspended structure and the carrier. Alternatively, the suspended structure may be configured to change the distance between the suspended structure and the carrier in response to an electrostatic force provided between the suspended structure and the carrier.
Abstract:
A sensor structure, including: a first diaphragm structure, an electrode element, and a second diaphragm structure arranged on an opposite side of the electrode element from the first diaphragm structure is disclosed. The sensor structure may also include a chamber formed by the first and second diaphragm structures, where the pressure in the chamber is lower than the pressure outside of the chamber. A method for forming the sensor structure is likewise disclosed.