Abstract:
An electrically-programmable memory cell programmed by means of injection of channel hot electrons into a charge-storage element capacitively coupled to a memory cell channel for modulating a conductivity thereof depending on a stored amount of charge. A first and a second spaced-apart electrode regions are formed in a semiconductor layer and define a channel region there between; at least one of the first and second electrode regions acts as a programming electrode of the memory cell. A control electrode is capacitively coupled to the charge-storage element. The charge-storage element is placed over the channel to substantially extend from the first to the second electrode regions, and is separated from the channel region by a dielectric layer. The dielectric layer has a reduced thickness in a portion thereof near the at least one programming electrode.
Abstract:
A process manufactures an interpoly dielectric layer for non-volatile memory cells of a semiconductor device with an interpoly dielectric layer. The process begins with forming the tunnel oxide, and hence the amorphous or polycrystalline silicon layer, using conventional techniques. After the amorphous or polycrystalline silicon layer is surface cleansed and passivated, the surface of the polycrystalline layer is nitrided directly by using radical nitrogen. This is followed by the formation of the interpoly dielectric, either as an ONO layer or a single silicon layer, by means of the CVD technique. Masking to define the floating gate may be performed immediately before or after the direct nitridation step is carried out. The equivalent electrical thickness of the interpoly dielectric, obtained by combining the nitride oxide layer and by the following dielectric, does not exceed 130 Angstroms in either the ONO layer or the single silicon layer embodiment.
Abstract:
An autotesting method of a cells matrix of a memory device is disclosed which comprises the steps of: reading the values contained in a plurality of the memory cells; comparing the read values with reference values; signalling mismatch of the read values with the reference values as an error situation; and storing the error situations. In the autotesting method, the reading, comparing, signalling, and storing steps are repeated for all the memory cells in an matrix column. The autotesting method according to the invention further comprises the steps of storing the positions of any columns having at least one one error situation; and repeating all of the preceding steps according to a step of scanning all the matrix columns.
Abstract:
The memory device of the invention outputs the read data in a time starting from the rising edge of the external clock that is shorter than that of other known devices, because the output buffer has an array of master-slave pairs of flip-flops synchronized by respective timing signals derived from the internal clock signal. The array receives data from the state machine through the second internal bus and provides the data to be output to the output stage of the buffer enabled by the state machine. A logic circuit generates timing signals for the master-slave flip-flops, respectively as logic NAND and logic AND of the internal clock signal and of an enabling signal of the output stage of the buffer generated by the state machine. Moreover, the memory device includes a circuit, synchronized by the internal clock signal, that introduces a delay of the enabling signal of the output stage of the buffer equivalent to a period of the internal clock signal.
Abstract:
An electronic power device of improved structure is fabricated with MOS technology to have a gate finger region and corresponding source regions on either sides of the gate region. This device has a first-level metal layer arranged to independently contact the gate region and source regions, and has a protective passivation layer arranged to cover the gate region. Advantageously, a wettable metal layer, deposited onto the passivation layer and the first-level metal layer, overlies said source regions. In this way, the additional wettable metal layer is made to act as a second-level metal.
Abstract:
A method is provided for manufacturing electronic non-volatile memory devices on a semiconductor substrate including a matrix of memory cells having floating gate regions formed on respective active areas and an oxide layer separating the active areas. The method may include forming sidewalls of the floating gate regions that are slanted with respect to a surface of the semiconductor substrate, forming a trench in the oxide layer following the formation of the floating gate regions, and forming a plug of polycrystalline silicon in the trench. The slanted sidewalls of the floating gate regions provide a lead-in for the formation of upper layers.
Abstract:
A regulated voltage-boosting device provides a charge-pump circuit, which has an input terminal receiving a first voltage and an output terminal supplying a second voltage higher than the first voltage. The regulated voltage-boosting device provides a plurality of voltage-boosting stages that can be selectively activated and deactivated. The regulated voltage-boosting device provides an automatic-selection circuit for activating a number of voltage-boosting stages which is correlated to the first voltage and to the second voltage.
Abstract:
A process for manufacturing a dual charge storage location electrically programmable memory cell that includes the steps of forming a central insulated gate over a semiconductor substrate; forming physically separated charge-confining layers stack portions of a dielectric-charge trapping material-dielectric layers stack at the sides of the central gate, the charge trapping material layer in each charge-confining layers stack portion forming a charge storage element; forming side control gates over each of the charge-confining layers stack portions; forming memory cell source/drain regions laterally to the side control gates; and electrically connecting the side control gates to the central gate. Each of the charge-confining layers stack portions at the sides of the central gate is formed with an nullLnull shape, with a base charge-confining layers stack portion lying on the substrate surface and an upright charge-confining layers stack portion lying against a respective side of the insulated gate.
Abstract:
A method of fabricating a MOS transistor with a controllable and modulatable conduction path through a dielectric gate oxide is disclosed, wherein the transistor structure comprises a dielectric oxide layer formed between two silicon plates, and wherein the silicon plates overhang the oxide layer all around to define an undercut having a substantially rectangular cross-sectional shape. The method comprises the steps of: chemically altering the surfaces of the silicon plates to have different functional groups provided in the undercut from those in the remainder of the surfaces; and selectively reacting the functional groups provided in the undercut with an organic molecule having a reversibly reducible center and a molecular length substantially equal to the width of the undercut, thereby to establish a covalent bond to each end of the organic molecule.
Abstract:
A voltage/current controller device, particularly for interleaving switching regulators, comprises: a DC/DC converter having a plurality of modules, with each module including a drive transistor pair connected in series between first and second supply voltage references, a current sensor connected to one transistor in the pair, and a current read circuit connected to the sensor. Advantageously, the read circuit comprises a transconductance amplifier connected across the current sensor to sense a voltage signal related to a load current being applied to each module, the transconductance amplifier reading the voltage signal with the transistor in the conducting state.