Abstract:
Methods of forming ethylbenzene are described herein. In one embodiment, the method includes contacting dilute ethylene with benzene in the presence of an alkylation catalyst to form ethylbenzene, wherein such contact occurs in a reaction zone containing a gaseous phase and recovering ethylbenzene from the reaction zone.
Abstract:
An apparatus and method for vaporizing and transporting an alkali metal salt is shown. The apparatus has a first conduit capable of transporting an alkali metal salt solution and a second conduit in fluid communication with the first conduit, the second conduit capable of transporting steam so that the alkali metal salt is dissipated into the steam forming a solution that can be transported, such as to a remote reaction zone. The solution can be transported via a third conduit that is capable of being heated by a heat source. The method can be used to add a promoter to a dehydrogenation catalyst during a dehydrogenation reaction.
Abstract:
Applicants have discovered that certain polyethylene (PE) homopolymers or copolymers of ethylene and C3 to C10 alpha-olefin monomers are more suitable for oriented processes than other polyethylene resins. In an aspect, the PE has a MFI of 0.3 g/10 min. to 5.0 g/10 min., a melting point of from 110° C. to 140° C., a density of from 0.912 g/cm3 to 0.965 g/cm3(%), a haze of 10% or less, a clarity of at least 90, and a gloss of at least 60. The polyethylene is heated and formed into an article, cooled, and then the article is stretch oriented. In an embodiment, the film, tape, the melt extruded, injection blow molded, injection stretch blow molded, cast, and thermoformed articles that can be produced with this polyethylene has a thickness of 0.1 mil to 100 mils. The polyethylene exhibits excellent elasticity, toughness, stretch and optical properties for such applications.
Abstract translation:申请人已经发现,乙烯和C 3至C 10α-烯烃单体的某些聚乙烯(PE)均聚物或共聚物比其它聚乙烯树脂更适用于取向过程。 在一方面,PE具有0.3g / 10min的MFI。 至5.0g / 10分钟,熔点为110℃至140℃,密度为0.912g / cm 3至0.965g / cm 3(%),雾度为10%以下,透明度 至少为90,光泽度至少为60.将聚乙烯加热并形成制品,冷却,然后将制品拉伸定向。 在一个实施方案中,可以用该聚乙烯生产的膜,带,熔体挤出,注射吹塑,注射拉伸吹塑,铸造和热成型制品的厚度为0.1密耳至100密耳。 聚乙烯表现出优异的弹性,韧性,拉伸性和光学性能。
Abstract:
Methods for preparing an impact copolymer by selecting a continuous phase polymer having a first melt flow rate and selecting a rubber phase polymeric material such that the final melt flow rate of the impact copolymer is within 2 g/10 min of the first melt flow rate. Impact copolymers made from such methods and films and molded articles produced from such impact copolymers are also included.
Abstract:
Polymeric compositions and processes of forming the same are discussed herein. The processes generally include contacting a polylactic acid with a reactive modifier selected from epoxy-functionalized polybutadiene, ionic monomer, and combinations thereof.
Abstract:
Embodiments of the present invention include a branched aromatic ionomer, and a process of making it, by co-polymerizing a first monomer comprising an aromatic moiety and an unsaturated alkyl moiety and a second monomer represented by the general formula: [R-AZ]y-MX wherein R is a hydrocarbon chain having from 2 to 40 carbons and at least one polymerizable unsaturation; A is an anionic group; M is a cationic group; Z is −1 or −2; X is +1, +2, +3, +4, or +5; and y is an integer having a value of from 1 to 4. The branched aromatic ionomer has a melt flow index ranging from 1.0 g/10 min. to 13 g/10 min. Optionally the melt flow index ranges from 1.3 g/10 min. to 1.9 g/10 min.
Abstract:
Injection stretch blow molded (ISBM) articles and methods of forming the same are described herein. The ISBM articles generally include a propylene-based impact copolymer.
Abstract:
Alkylation systems and methods of minimizing alkylation catalyst regeneration are described herein. The alkylation systems generally include a preliminary alkylation system adapted to receive an input stream including an alkyl aromatic hydrocarbon and contact the input stream with a preliminary alkylation catalyst disposed therein to form a first output stream. The preliminary alkylation catalyst generally includes a zeolite catalyst having a SiO2/Al2O3 ratio of less than about 25. The alkylation systems further include a first alkylation system adapted to receive the first output stream and contact the first output stream with a first alkylation catalyst disposed therein and an alkylating agent to form a second output stream.
Abstract translation:本文描述了使烷基化催化剂再生最小化的烷基化系统和方法。 烷基化系统通常包括适于接收包含烷基芳族烃的输入流并将输入流与设置在其中的预置烷基化催化剂接触以形成第一输出流的初步烷基化系统。 初步烷基化催化剂通常包括SiO 2 / Al 2 O 3比小于约25的沸石催化剂。烷基化系统还包括适于接收第一输出流并将第一输出流与置于其中的第一烷基化催化剂接触的第一烷基化系统 和烷基化剂以形成第二输出流。
Abstract:
Embodiments of the present invention include a branched aromatic ionomer, and a process of making it, by co-polymerizing a first monomer comprising an aromatic moiety and an unsaturated alkyl moiety and a second monomer represented by the general formula: [R-AZ]y-MX wherein R is a hydrocarbon chain having from 2 to 40 carbons and at least one polymerizable unsaturation; A is an anionic group; M is a cationic group; Z is −1 or −2; X is +1, +2, +3, +4, or +5; and y is an integer having a value of from 1 to 4. The branched aromatic ionomer has a melt flow index ranging from 1.0 g/10 min. to 13 g/10 min. Optionally the melt flow index ranges from 1.3 g/min. to 1.9 g/10 min.
Abstract:
A method of preparing a polystyrene blend that includes combining a first polystyrene composition having a first melt flow index with a second polystyrene composition having a second melt flow index and forming a polystyrene blend, the second melt flow index being at least 2 dg/min higher that the first melt flow index. The polystyrene blend has an observed tensile strength value greater than 3% above the expected tensile strength value. The second polystyrene composition can include a recycled polystyrene material, which can include expanded polystyrene. An alternate method of preparing the polystyrene blend includes combining a polystyrene composition with a styrene monomer to form a reaction mixture, polymerizing the reaction mixture and obtaining a polystyrene blend, where the polystyrene containing composition has a melt flow index at least 2 dg/min higher than the melt flow index of the styrene monomer after it has been polymerized.
Abstract translation:一种制备聚苯乙烯共混物的方法,其包括将具有第一熔体流动指数的第一聚苯乙烯组合物与具有第二熔体流动指数的第二聚苯乙烯组合物组合并形成聚苯乙烯共混物,所述第二熔体流动指数至少为2dg / min 第一个熔体流动指数。 聚苯乙烯共混物的观测拉伸强度值大于预期拉伸强度值的3%以上。 第二聚苯乙烯组合物可以包括再循环的聚苯乙烯材料,其可以包括发泡聚苯乙烯。 制备聚苯乙烯共混物的替代方法包括将聚苯乙烯组合物与苯乙烯单体组合以形成反应混合物,使反应混合物聚合并获得聚苯乙烯共混物,其中含聚苯乙烯的组合物的熔体流动指数至少为2dg / min 比苯乙烯单体聚合后的熔体流动指数高。