Abstract:
Disclosed is a backlight unit comprising: a reflecting plate having a light source seated thereon; a first metal pattern formed on one surface of the reflecting plate so as to make contact with the light source; and a second metal pattern formed on the other surface of the reflecting plate and electrically connected to the first metal pattern.
Abstract:
Provided is a method for transmitting information for a coordinated multiple point transmission and reception (CoMP) operation, the method performed by a first evolved node B (eNB) and comprising: calculating a utility metric of a user equipment(s) (UE(s)) using a specific CoMP hypothesis; and transmitting the calculated utility metric and information about a CoMP hypothesis associated with the utility metric, to a second eNB, wherein the specific CoMP hypothesis comprises information about an eNB(s) hypothesized to perform specific-level power transmission among eNBs participating in the CoMP operation together with the first eNB.
Abstract:
The present invention relates to a wireless communication system, and more particularly, to a method and device for performing or supporting NIB coordinated multi-point (CoMP) transmission in a wireless communication system. The method for performing NIB CoMP transmission in the wireless communication system according to an embodiment of the present invention may include: receiving signaling comprising at least one CoMP hypothesis set and at least one benefit metric information bit from a first network node, at a second network node; performing CoMP transmission based on the at least one CoMP hypothesis set, at the second network node. The at least one CoMP hypothesis set and the at least one benefit metric information bit are defined in information element format included in the signaling, and information indicated by the at least one benefit metric information comprises specific information, for which the at least one benefit metric information configured as special value.
Abstract:
A solar cell module includes an upper substrate, a lower substrate opposite the upper substrate, a solar cell panel positioned between the upper substrate and the lower substrate, the solar cell panel including a plurality of solar cells which are arranged in a matrix form and are connected to one another through a wiring member to form strings, a passivation layer configured to package the solar cell panel, a frame configured to surround an outer perimeter of the solar cell panel, a connection terminal configured to connect two adjacent strings in the solar cell panel, and a cover member configured to cover the connection terminal.
Abstract:
A method for estimating a channel transmitted through a 2-dimensional (2D) array antenna by a user equipment (UE) in a wireless communication system comprising calculating channel estimation values for each of horizontal and vertical direction antenna arrays of the 2D array antenna in a channel state information-reference signal (CSI-RS) resource using a discrete Fourier transform (DFT) based channel estimation scheme, wherein the channel estimation values are expressed as one or more non-zero channel taps due to multipath fading; deriving channel vectors for each of the horizontal direction antenna arrays and channel vectors for each of the vertical direction antenna arrays using L significant power sums of filtered channel taps; and calculating channel vectors of the 2D array antenna by operating Kronecker product of the channel vectors for each of the horizontal direction antenna arrays and the channel vectors for each of the vertical direction antenna arrays.
Abstract:
An apparatus of light source for display for display according to an exemplary embodiment of the present disclosure may include a light source module configured to generate and emit a light, a light transmission member configured to decrease a luminous flux per unit area and emit the light, by receiving the light from the light source module, a first wavelength conversion part arranged on a light path from the light source module to an emitting surface of the light transmission member to convert a portion of the received light to a light of a predetermined wavelength and emit the light, and a second wavelength conversion part discretely arranged from the first wavelength conversion part on the light path to convert a portion of the received light to a light of a wavelength different from the wavelength of the first wavelength conversion part and emit the light.
Abstract:
A solar cell is discussed. The solar cell includes a semiconductor substrate, a p-type conductive region formed at the semiconductor substrate and including a p-type impurity, and a passivation film formed on the p-type conductive region and including aluminum oxide. The passivation film has a thickness of 7 to 17 Å.