Abstract:
A system for raising and lowering a sectional overhead door between an open position and a closed position including, a counterbalance system adapted to be connected to the door, an operator motor assembly mounted proximate to the sectional overhead door in the closed position of the sectional overhead door, at least a portion of the operator motor assembly movable between a door operating position and a door locking position, and a locking assembly (370) having an engaged position to hold the motor assembly in the operating position and a disengaged position to release the motor assembly allowing it to move to the door locking position. The system may be provided with a remote light assembly having a switchable light source in sensing communication with the operator motor such that operation of the motor activates the light source. The system is further provided with a handle assembly (515) operatively engaging the motor assembly (40) and counterbalance system (30) to selectively disconnect the motor assembly (40) from the counterbalance system (30), whereby urging of a rotatable handle (516) to a disconnect position (516′) allows the door (D) to be manually freely moveable with the aid of the counterbalance system (30).
Abstract:
A slidable and hinged door, e.g., in a motor vehicle, in which the door is displaceable from the plane of a door opening by at least one swivel arm developed as a double hinge, and, for the sliding function, is displaceable into a plane arranged in front of it that is approximately parallel to it and is slidable in the plane arranged in front of it by a parallel guidance, may be simple to handle and to be operated by motor, at the same time as having a simple arrangement from a construction point of view. The swiveling motions and/or the swiveling possibilities for the operation of the door are able to be activated or determined within the double hinge by servomotors engaging at the first and the second hinge of the double hinge.
Abstract:
A clutch includes a moving gear member 65 being rotated integrally with a wheel at all times and engaged with a fixed gear member 69 when it is moved in a first direction and disengaged from the fixed gear member when it is moved in a second direction, an armature 61 pushing out the moving gear member 65 in the first direction when it is rotated relatively to the moving gear member 65, and an electromagnetic coil portion 60 that applies brake resistance to the armature 61 by attracting the armature 61 by magnetic force to restrict a concurrently-rotating-state of the armature 61 and the moving gear member 65.
Abstract:
A latch reinforcing block for engagement with the nose portion of any tilt latch assembly and preferably with the above-mentioned camlock/tilt latch combination, said block comprising a top and bottom and having extending from proximate the top to proximate the bottom there-through fastening portions to fasten said reinforcing block within the track of a preferred window assembly, said reinforcing block having disposed proximate the top thereof at least one cutout, notch or pocket extending towards the bottom and for receipt of a corresponding nose portion of the latch assembly in order to pass loads such as wind loads or the like to the frame section to which the reinforcing block is attached.
Abstract:
A power drive assembly (110) for controlling movement of a closure panel (102, 105) of a vehicle includes a closure panel (102, 105) that moves relative to the vehicle between open and closed positions, and a latch (108, 115) for cinching the closure panel (102, 105) to the vehicle. The drive assembly (110) includes an actuator (134), a first torque output (136) coupled to effect movement of the closure panel (102, 105), a second torque output (138) coupled to the latch (115), and a clutch assembly (144, 150) coupled between the actuator (134) and the torque outputs (136, 138) for selectively transferring torque between the actuator (134) and the torque outputs (136, 138).
Abstract:
A clutch includes a moving gear member 65 being rotated integrally with a wheel at all times and engaged with a fixed gear member 69 when it is moved in a first direction and disengaged from the fixed gear member when it is moved in a second direction, an armature 61 pushing out the moving gear member 65 in the first direction when it is rotated relatively to the moving gear member 65, and an electromagnetic coil portion 60 that applies brake resistance to the armature 61 by attracting the armature 61 by magnetic force to restrict a concurrently-rotating-state of the armature 61 and the moving gear member 65.
Abstract:
To provide a vehicle door controlling apparatus, which in the configuration of connecting doors, when one door operates electrically, the door connecting mechanism does not interfere with the door that is operating. A vehicle door controlling apparatus comprises a connection locking mechanism provided between a swinging door and a sliding door for locking the two doors by connecting both of them to each other. The swinging door is capable of opening or closing the front side of an opening formed in a vehicle and the second door is capable of opening or closing the rear side of the opening. The vehicle door controlling apparatus further comprises an operating switch which requests the opening of the sliding door, a rotary switch which detects a lock state between the doors, and a latch switch and a pole switch which detect a lock state at the rear side of the sliding door. When the controller detects a request for opening the sliding door using the operating switch is detected, a release actuator is operated to release the lock state, an electric current is applied to a sliding motor, and electrical operation of the sliding door starts.
Abstract:
A method and system for controlling vehicle door position in improved reliability of a vehicle door electromechanical positioning components. The vehicle door control system includes an abnormality detector for detecting abnormal operation of the vehicle door by a deviation of expected door position and/or velocity. If abnormal operation is detected, operation of the electrical motor driving the door is ceased for a predetermined time period. Operation is then resumed if the abnormal condition has been removed. The control system may include a counter for counting a number of attempts to resume operation and further attempts to resume may be ceased if the counter exceeds a predetermined count value. The motor or door positioning system may include a locking device that locks the vehicle door at various positions and the control system use indications of a locked position indicator to determine whether or not to resume operation of the electric motor.
Abstract:
A vehicle power window and power door lock system includes a vehicle pillar adapted for use between openable and closable vehicle doors and a single lock actuation assembly in the pillar adapted for engagement with a front door lock latch assembly on a front door and a rear door lock latch assembly on a rear door for locking and unlocking the doors. The vehicle power window and power door lock system further includes a single reversible electric motor in the pillar adapted for selective engagement with a front window on an adjacent front door and a rear window on an adjacent rear door for driving the windows up and down. A vehicle side door assembly includes a door lock latch assembly, a latch rod operatively connected to the latch assembly, a window, and a driven gear operatively connected to the window. The latch rod is operably connectable to a lock actuation assembly located in a body pillar adjacent to the door when the door is positioned against the body pillar. The driven gear is operably connectable to a motor located in the body pillar.
Abstract:
A lock latch mechanism disposed within a powered locking device of a transit vehicle door system for maintaining a lock lever in an unlock position without the aid of the lock actuator. The lock latch mechanism includes a lock latch lever biased for engagement with an unlock cam through the use of a bias spring. The lock latch mechanism further includes a reset lever assembly engaging such lock latch lever during the door closing motion to allow movement of the lock lever form such unlocking position into such locking position to maintain at least one door of the transit vehicle in the fully closed and lock position. A manual release lever is provided to move the lock lever from such locking position into such unlocking position enabling the lock latch mechanism to maintain the lock lever in such unlocked position.