Forming TS cut for zero or negative TS extension and resulting device

    公开(公告)号:US10249535B2

    公开(公告)日:2019-04-02

    申请号:US15433188

    申请日:2017-02-15

    Abstract: A method of forming a logic or memory cell with less than or equal to 0 nm of TS extending past the active fins and the resulting device are provided. Embodiments include forming gates across pairs of fins on a substrate; forming pairs of RSD between the gates on the fins; forming a planar SAC cap on each of the gates; forming a metal layer over the substrate coplanar with the SACs; forming a TS structure in the metal layer over the fins, the TS structure formed over the pairs of RSD, each upper portion having a width equal to or less than an overall width of a pair of fins; forming spacers on opposite sides of the upper portions; removing the metal layer between adjacent spacers; forming an ILD over the substrate; and forming a CA on each upper portion and a CB on a gate through the ILD.

    Multi-stage pattern recognition in circuit designs

    公开(公告)号:US10248754B2

    公开(公告)日:2019-04-02

    申请号:US15602810

    申请日:2017-05-23

    Abstract: An identification of a first area of an IC design surrounding a failure component is received; and, in response, a smaller portion of the first area is selected. The smaller portion also surrounds the failure component, is smaller than the first area, and contains less circuit components than the first area. The smaller portion is matched to other areas of the IC design to identify potentially undesirable patterns of the IC design that are the same size as the first area. Additionally, the potentially undesirable patterns are grouped into pattern categories, the pattern categories are matched to known good pattern categories, and the known good patterns are removed from the potentially undesirable patterns to leave potential failure patterns. The potential failure patterns of the IC design are then output.

    METHODS OF FORMING A GATE CONTACT STRUCTURE FOR A TRANSISTOR

    公开(公告)号:US20190096677A1

    公开(公告)日:2019-03-28

    申请号:US15712301

    申请日:2017-09-22

    Abstract: One illustrative method disclosed includes selectively forming sacrificial conductive source/drain cap structures on and in contact with first and second source/drain contact structures positioned on opposite sides of a gate of a transistor and removing and replacing the spaced-apart sacrificial conductive source/drain cap structures with first and second separate, laterally spaced-apart insulating source/drain cap structures that are positioned on the first and second source/drain contact structures. The method also includes forming a gate contact opening that extends through a space between the insulating source/drain cap structures and through the gate cap so as to expose a portion of the gate structure and forming a conductive gate contact structure (CB) that is conductively coupled to the gate structure.

    Gate contact structure positioned above an active region of a transistor device

    公开(公告)号:US10243053B1

    公开(公告)日:2019-03-26

    申请号:US15876316

    申请日:2018-01-22

    Abstract: One illustrative IC product disclosed herein includes a gate structure for a transistor, a conductive source/drain contact structure and an insulating source/drain cap structure positioned above the conductive source/drain contact structure, wherein the insulating source/drain cap structure has a first notch formed therein. In one illustrative example, the product also includes a sidewall spacer that has a second notch in an upper portion of the sidewall spacer, wherein a first portion of the insulating source/drain cap structure is positioned in the second notch, and a conductive gate contact structure comprising first and second portions, the first portion of the conductive gate contact structure being positioned in the first notch and the second portion of the conductive gate contact structure being in contact with the gate structure.

    METHODS FOR FORMING FINS
    267.
    发明申请

    公开(公告)号:US20190088478A1

    公开(公告)日:2019-03-21

    申请号:US15709730

    申请日:2017-09-20

    Abstract: The disclosure is directed to methods for forming a set of fins from a substrate. One embodiment of the disclosure includes: providing a stack over the substrate, the stack including a first oxide over the substrate, a first nitride over the pad oxide, a second oxide over the first nitride, and a first hardmask over the second oxide; patterning the first hard mask to form a first set of hardmask fins over the second oxide; oxidizing the first set of hardmask fins to convert the first set of hardmask fins into a set of oxide fins; using the set of oxide fins as a mask, etching the second oxide and the first nitride to expose portions of the first oxide thereunder such that remaining portions of the second oxide and the first nitride remain disposed beneath the set of oxide fins thereby defining a set of mask stacks; and using the set of mask stacks as a mask, etching the exposed portions of the first oxide and the substrate thereby forming the set of fins from the substrate.

    Cross-coupled contact structure on IC products and methods of making such contact structures

    公开(公告)号:US10236296B1

    公开(公告)日:2019-03-19

    申请号:US15861097

    申请日:2018-01-03

    Abstract: An IC product disclosed herein includes a first merged doped source/drain (MDSD) region having an upper surface, a first side surface and a second side surface that intersect one another at a corner of the first merged doped source/drain region, a second MDSD region and a contact trench in an isolation structure positioned between the first and second MDSD regions. The product also includes a conductive gate structure positioned above at least the second MDSD region and a cross-coupled contact structure that comprises a first portion positioned within the contact trench laterally adjacent to and conductively coupled to at least one of the first side surface and the second side surface, and a second portion that is positioned above and conductively coupled to the upper surface of the MDSD region, wherein the cross-coupled contact structure is conductively coupled to the conductive gate structure.

Patent Agency Ranking