Abstract:
A small infrared sensor has a wide infrared light-receiving area (viewing angle), high electromagnetic shielding characteristics, and excellent electromagnetic-wave resistance characteristics. In the infrared sensor, supporting portions are disposed at four corners of a substantially rectangular opening in a package. The supporting portions support an optical filter, disposed so as to cover the opening, at positions that are lower than an upper end of an inner peripheral wall defining the opening. While the optical filter is supported by the supporting portions as a result of inserting a portion of a surface side of the optical filter facing the supporting portions into the opening, the optical filter is secured to the package. The optical filter and the package are joined and secured, and electrically connected to each other through a conductive adhesive.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
An infrared sensor has a groove formed at a peripheral portion of an optical filter in a region opposed to a circumferential region of an opening of a package so as to be continuously located in the peripheral portion of the optical filter. The optical filter has a resistance of about 1 MΩ/cm or less. The package is mainly composed of a metal material. A conductive adhesive is used as an adhesive for joining the optical filter to the package. In a case where the optical filter has a filter body and a thin film made of an insulating material and provided on a surface of the filter body, the groove is formed to have a depth extending from the surface provided with the thin film made of the insulating material to the filter body.
Abstract:
A purpose of the present invention is to provide a photoelectric sensor and an emitting device for a photoelectric sensor which can improve resistance to liquids. A purpose of the present invention is also to provide a photoelectric sensor and an emitting device for a photoelectric sensor which can improve productivity.According to the present invention, a main casing is described in which a plurality of photoelectric elements are included along a first direction; a first opening formed on the main casing for passing through a light corresponding to the photoelectric element between the inside and outside of the main casing; a transparent plate affixed on a pair of first surfaces of the main casing so as to cover the first opening, for passing through the light between the inside and outside of the main casing; a first adhesive member disposed between the transparent plate and the pair of first surfaces, for affixing the transparent plate on the pair of first surfaces; a pair of projections formed on the main casing along the first direction, outstanding along to an optical axis of the light, and disposed apart from each other whereby the transparent plate is accessible from the outside of the main casing to the pair of first surfaces; a pair of channels formed on the main casing along the first direction and between the pair of first surfaces and the pair of projections of the main casing; and a pair of first pressing members fixed in the pair of channels and contacting an opposite side of the surface where the transparent plate is located, for pressing the transparent plate to the main casing.
Abstract:
A receptacle assembly for a twist-lock photocontrol that is mounted on a luminaire housing. The assembly includes a receptacle and a spring clamp. The receptacle has a disc portion with a hub extending from the central portion of the back side, a perimeter side wall with a castellated bottom edge that engages stops on the luminaire housing. Three fingers extend from the back side of the disc and terminate at a lip edge. The spring clamp has a substantially flat, ring-shaped body that includes a top surface, an opening, an inner edge, an outer edge, and at least one pair of spring members. The receptacle is attached to a luminaire housing using the spring clamp. The orientation of the receptacle can be adjusted and can be locked into a stationary position without tools.
Abstract:
A tester according to the present invention can conduct a test on optical devices each having a different positional relation between a position of a contact face of an external contact terminal and a direction of light emitted from a semiconductor laser element.
Abstract:
The invention discloses a luminance sensing apparatus for sensing the luminance of any area on a panel. The luminance sensing apparatus comprises a base, a first shaft, a first actuator, a second shaft, a second actuator, and at least one luminance sensor. The first shaft is pivotally connected to the base, and the second shaft is pivotally connected to the first shaft. The luminance sensor is disposed on the second shaft. The first actuator is used for actuating the first shaft to rotate with respect to the base, and the second actuator is used for actuating the second shaft to rotate with respect to the first shaft, such that the luminance sensor on the second shaft is capable of sensing luminance of any area on the panel. Accordingly, the luminance on the panel can be uniformly calibrated.
Abstract:
A light detector having spaced electrodes preset by pins or a spacer within a sealed enclosure. The detector may have a MEMS structure that is separate from the sealing of the enclosure. Further, the detector may have a lens for the transmission of light onto the elements. The lens may be coated to affect the amount of light admitted into the enclosure. Light detectable by the sensor may be ultra-violet.
Abstract:
An optical sensor device that can be installed on board a motor vehicle for aid to driving and/or for automatic activation of one or more on-board systems according to the environmental conditions detected comprises a sensor module including an array of the CCD or CMOS type, the sensitive area of which is split into sub-areas dedicated to different functions, which are separate from one another and set at a distance apart, and located adjacent to the four vertices of the sensitive area of the array.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems. Improved shade matching/prediction results are obtained through the use of volumes/regions, preferably polygons, around shades in a shade system.