Abstract:
A spectroscopy system is provided which is optimized for operation in the VUV region and capable of performing well in the DUV-NIR region. Additionally, the system incorporates an optical module which presents selectable sources and detectors optimized for use in the VUV and DUV-NIR. As well, the optical module provides common delivery and collection optics to enable measurements in both spectral regions to be collected using similar spot properties. The module also provides a means of quickly referencing measured data so as to ensure that highly repeatable results are achieved. The module further provides a controlled environment between the VUV source, sample chamber and VUV detector which acts to limit in a repeatable manner the absorption of VUV photons. The use of broad band data sets which encompass VUV wavelengths, in addition to the DUV-NIR wavelengths enables a greater variety of materials to be meaningfully characterized. Array based detection instrumentation may be exploited to permit the simultaneous collection of larger wavelength regions.
Abstract:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
Abstract:
An optical processor includes a light source (20), a grating device (23), a first lens (24), a reflector (25), a second lens (26), an array of mirror cells (28), a color wheel (29), and a third lens (30). The light source is for generating a number of light beams. The grating device is for reflecting and dispersing the generated light beams. The first lens is for imaging the reflected and dispersed light beams. The reflector is for reflecting the imaged light beams. The second lens is for correcting any aberration of the reflected light beams. The array of mirror cells is for reflecting the light beams received from the second lens. The color wheel is for coloring the reflected light beams. The third lens is for projecting the colored light beams onto a display.
Abstract:
An apparatus for optical sensing of samples includes an optical source, an optical assembly, a sample holder, an objective lens, and a detector. The objective lens collimates light emitted by the sample. Preferably, the optical assembly rotates about an axis, allowing the sensing apparatus to sense results from plural locations on a sample without moving the sample. Moving the sample in a linear direction while rotating the optical assembly allows sensing of an entire sample. Preferably, light from the optical source enters the optical assembly along the axis of rotation. Sensing methods consistent with the invention are also described.
Abstract:
A spectrometer system includes a thermal light source for illuminating a sample, where the thermal light source includes a filament that emits light when heated. The system additionally includes a spectrograph for measuring a light spectrum from the sample and an electrical circuit for supplying electrical current to the filament to heat the filament and for controlling a resistance of the filament. The electrical circuit includes a power supply that supplies current to the filament, first electrical components that sense a current through the filament, second electrical components that sense a voltage drop across the filament, third electrical components that compare a ratio of the sensed voltage drop and the sensed current with a predetermined value, and fourth electrical components that control the current through the filament or the voltage drop across the filament to cause the ratio to equal substantially the predetermined value.
Abstract:
The invention relates to systems and methods for measuring properties of samples with standardized spectroscopic systems. The methods can include (i) measuring, with a first spectroscopic system, spectra of at least three different reference targets; (ii) calibrating the first spectroscopic system; (iii) measuring, with the first spectroscopic system, a spectrum of a known reference specimen having a known value of the property; (iv) generating a model for the measured property using the spectrum of the known reference specimen; (v) measuring, with a second spectroscopic system, the spectra of at least three different reference targets; (vi) calibrating the second spectroscopic system; (vii) applying the model to the second spectroscopic system; (viii) measuring a spectrum of the sample using the second spectroscopic system; and (ix) determining a value of the property using the model.
Abstract:
This invention provides methods for treating a variety of disorders using electromagnetic radiation directed at excitable tissues, including nerves, muscles and blood vessels. By controlling the wavelength, the wavelength bandpass, pulse duration, intensity, pulse frequency, and/or variations of those characteristics over time, and by selecting sites of exposure to electromagnetic radiation, improvements in the function of different tissues and organs can be provided. By monitoring physiological variables such as muscle tone and activity, temperature gradients, surface electromyography, blood flow and others, the practitioner can optimize a therapeutic regimen suited for the individual patient.
Abstract:
A calibration method for radiometric imaging systems that relies on an absolute measurement of scene radiance (thereby requiring a baseline measurement of zero radiance), and a shutter assembly for taking the baseline measurement of zero radiance which is operable under cryogenic temperatures as low as 80.5K (−192.65° C.) in vacuums measuring
Abstract:
The present invention is a dispersive, diffraction grating, NIR spectrometer that automatically calibrates the wavelength scale of the instrument without the need for external wavelength calibration materials. The invention results from the novel combination of: 1) a low power He—Ne laser at right angles to the source beam of the spectrometer; 2) a folding mirror to redirect the collimated laser beam so that it is parallel to the source beam; 3) the tendency of diffraction gratings to produce overlapping spectra of higher orders; 4) a “polka dot” beam splitter to redirect the majority of the laser beam toward the reference detector; 5) PbS detectors and 6) a software routine written in Lab VIEW that automatically corrects the wavelength scale of the instrument from the positions of the 632.8 nm laser line in the spectrum.
Abstract:
A radiation pulse, such as from a solar simulator, is spectrally analyzed over a selected sampling pulse that is shorter in duration than the radiation pulse and is timed to begin after the start of the radiation pulse. A deformable membrane mirror is controlled to function as a high speed shutter in the path of the radiation pulse. When not deformed, the mirror reflects the radiation pulse into an optical instrument, such as a spectroradiometer. A sampling pulse is generated for a selected time after the start of the radiation pulse and is applied to the mirror to ensure total reflection of the radiation pulse only for the duration of the sampling pulse. Controls are provided to adjust the start time and duration of the sampling pulse, and to adjust the sensitivity of sensing the start of the radiation pulse.