Abstract:
The present invention provides a method of reducing corrosion and water decomposition on a surface of an electrode having a titanium nitride conductive layer disposed on a substrate and estimating extent of reduction thereof. The electrode is immersed into a solution containing a hydroxyl-functional compound. Thereafter, a voltage is applied to the titanium nitride conductive layer of the electrode. The extent of oxidation of the titanium nitride conductive layer is correlated with the extent of formation of oxide of titanium nitride and/or the extent of oxidation of the titanium nitride conductive layer is correlated with the increase of surface roughness. The extent of water decomposition is correlated with formation of hydrogen and oxygen bubbles.
Abstract:
Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.
Abstract:
A process of doping a silicon layer with dopant atoms generally includes reacting a vapor of a dopant precursor with oxide and/or hydroxide reactive sites present on the silicon layer to form a self assembled monolayer of dopant precursor; hydrolyzing the self assembled monolayer of the dopant precursor with water vapor to form pendant hydroxyl groups on the dopant precursor; capping the self assembled monolayer with an oxide layer; and annealing the silicon layer at a temperature effective to diffuse dopant atoms from the dopant precursor into the silicon layer. Additional monolayers can be formed in a similar manner, thereby providing controlled layer-by-layer vapor phase deposition of the dopant precursor compounds for controlled doping of silicon.
Abstract:
A method of forming a polymeric material with a pendant polycyclic aromatic compound precursor includes forming a polycyclic aromatic compound precursor (e.g., a pentacene precursor) including at least one polymerizable functionality, and polymerizing the polymerizable functionality to form the polymeric material with the pendant precursor.
Abstract:
Techniques for ultra-sensitive detection are provided. In one aspect, a detection device is provided. The detection device comprises a source; a drain; a nanowire comprising a semiconductor material having a first end clamped to the source and a second end clamped to the drain and suspended freely therebetween; and a gate in close proximity to the nanowire.
Abstract:
A method of placing a functionalized semiconducting nanostructure, includes functionalizing a semiconducting nanostructure including one of a nanowire and a nanocrystal, with an organic functionality including a functional group for bonding to a bonding surface, dispersing the functionalized semiconducting nanostructure in a solvent to form a dispersion, and depositing the dispersion onto the bonding surface.
Abstract:
Techniques for forming enhanced electrical connections are provided. In one aspect, a method of forming an electrical connecting device includes the steps of: depositing an elastomeric material on an electrically insulating carrier; and metallizing the elastomeric material so as to form an electrically conductive layer running continuously through a plane of the carrier and along a surface of the elastomeric material.
Abstract:
Techniques for forming enhanced electrical connections are provided. In one aspect, an electrical connecting device comprises an electrically insulating carrier having one or more contact structures traversing a plane thereof. Each contact structure comprises an elastomeric material having an electrically conductive layer running along at least one surface thereof continuously through the plane of the carrier.
Abstract:
The invention is directed to a radiation sensitive compound comprising a surface binding group proximate to one end of the compound for attachment to a substrate, and a metal binding group proximate to an opposite end of the compound. The metal binding group is not radiation sensitive. The radiation sensitive compound also includes a body portion disposed between the surface binding group and the metal binding group, and a radiation sensitive group positioned in the body portion or adjacent to the metal binding group. The surface binding group is capable of attaching to a substrate selected from a metal, a metal oxide, or a semiconductor material.
Abstract:
A porous composite material useful in semiconductor device manufacturing, in which the diameter (or characteristic dimension) of the pores and the pore size distribution (PSD) is controlled in a nanoscale manner and which exhibits improved cohesive strength (or equivalently, improved fracture toughness or reduced brittleness), and increased resistance to water degradation of properties such as stress-corrosion cracking, Cu ingress, and other critical properties is provided. The porous composite material is fabricating utilizing at least one bifunctional organic porogen as a precursor compound.