Abstract:
The invention relates to systems and methods including a combination of thermal generating device technologies to achieve more efficiency and accuracy in PCR temperature cycling of nucleic samples undergoing amplification.
Abstract:
The invention relates to methods and devices for control of an integrated thin-film device with a plurality of microfluidic channels. In one embodiment, a microfluidic device is provided that includes a microfluidic chip having a plurality of microfluidic channels and a plurality of multiplexed heater electrodes, wherein the heater electrodes are part of a multiplex circuit including a common lead connecting the heater electrodes to a power supply, each of the heater electrodes being associated with one of the microfluidic channels. The microfluidic device also includes a control system configured to regulate power applied to each heater electrode by varying a duty cycle, the control system being further configured to determine the temperature of each heater electrode by determining the resistance of each heater electrode.
Abstract:
A microfluidic chip includes microfluidic channels, elements for thermally and optically isolating the microfluidic channels, and elements for enhancing the detection of optical signal emitted from the microfluidic channels. The thermal and optical isolation elements may comprise barrier channels interposed between adjacently-arranged pairs of microfluidic channels for preventing thermal and optical cross-talk between the adjacent microfluidic channels. The isolation element may alternatively comprise reflective film embedded in the microfluidic chip between the adjacent microfluidic channels. The signal enhancement elements comprise structures disposed adjacent to the microfluidic channels that reflect light passing through or emitted from the microfluidic channel in a direction toward a detector. The structures may comprise channels or a faceted surface that redirects the light by total internal reflection or reflective film material embedded in the microfluidic chip.
Abstract:
The present invention relates to systems and methods for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules. The present invention in one embodiment provides a system that includes a microfluidic channel comprising a PCR processing zone and an HRTm analysis zone; and an image sensor having a first image sensor region having a first field of view and a second image sensor region having a second field of view, wherein the second field of view is different than the first field of view, wherein at least a portion of the PCR processing zone is within the first field of view; and at least a portion of the HRTm analysis zone is within the second field of view.
Abstract:
The present invention relates to a method and system for determining Copy Number Variations (CNVs) in a genomic test sample including target amplicons and a reference amplicons. Specifically, nucleic acid melting curves are generated for the test sample. A mathematical model is fitted to each of the nucleic acid melting curves to separate target and reference melting reactions within the measured nucleic acid melting curve. The fitting parameters of the mathematical model are calculated. A CNV of the test sample is determined based on the fitting parameters of the mathematical model corresponding to the target and reference melting reactions.
Abstract:
The present invention relates to methods and systems for the analysis of nucleic acids present in biological samples, and more specifically, relates to clustering melt curves derived from high resolution thermal melt analysis performed on a sample of nucleic acids, the resulting clusters being usable, in one embodiment, for analyzing the sequences of nucleic acids and to classify their genotypes that are useful for determining the identity of the genotype of a nucleic acid that is present in a biological sample.
Abstract:
The present invention relates to a method and system for a label-free cell analysis based on Brillouin light scattering techniques. Combined with microfluidic technologies according to the present invention, Brillouin spectroscopy constitutes a powerful tool to analyze physical properties of cells in a contactless non-disturbing manner. Specifically, subcellular mechanical information can be obtained by analyzing the Brillouin spectrum of a cell. Furthermore, a novel configuration of Brillouin spectroscopy is provided to enable simultaneous analysis of multiple points in a cell sample.
Abstract:
An interface cartridge for a microfluidic chip, with microfluidic process channels and fluidic connection holes at opposed ends of the process channels, provides ancillary fluid structure, including fluid flow channels and input and/or waste wells, which mix and/or convey reaction fluids to the fluidic connection holes and into the process channels of the microfluidic chip.
Abstract:
A system and a method for slug edge detection in a microchannel of a microfluidic device is provided. Specifically, the system comprises an image sensor in communication with the microchannel. The microchannel has at least two fluid slugs each of which has a marker of different color providing color gradient across the edge between the adjacent fluid slugs. An edge score function is generated for each channel segmentation dividing the microchannel into tvv′O segments at a specific location along the microchannel. The edge score function is proportional to a between class variance for intensity values associated with the tvvo selected channel segments. The edge location is determined as the location along the channel defining one of the channel segmentations based at least in part on the edge score function.
Abstract:
A microfluidic chip having integrated heaters and a method for manufacturing the microfluidic chip is provided. Specifically, the microfluidic chip comprises a first substrate having a microchannel formed therein. The second substrate is bonded to the first substrate to encapsulate the microchannel. An integrated heating element, that is hermetically sealed and electrically isolated from the microchannel, is formed on the top surface the second substrate after the first and second substrates are bonded together. A biological reaction can be performed in the microchannel of the microfluidic chip while the fluid in the microchannel is heated by electrical current passing through the integrated heating element.