Abstract:
We disclose an apparatus comprising: a hand-portable optical analysis unit including an optical interface; and a device configured to receive and releasably engage the hand-portable optical analysis unit. The device comprises: a housing; a sample unit in the housing; and a resilient member configured to bias the sample unit and the hand-portable analysis unit towards each other when the hand-portable optical analysis unit is received in the device to compress a sample disposed between the sample unit and the optical interface of the optical analysis unit. Methods of analyzing samples are also disclosed.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise various light excitation and detection configurations. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Abstract:
Disclosed are apparatus, kits, methods, and systems that include a radiation source configured to direct radiation to a sample; a detector configured to measure radiation from the sample; an electronic processor configured to determine infotmation about the sample based on the measured radiation; a housing enclosing the source, the detector, and the electronic processor, the housing having a hand-held form factor; an arm configured to maintain a separation between the sample and the housing, the arm including a first end configured to connect to the housing and a second end configured to contact the sample; and a layer positioned on the second end of the arm, the layer being configured to contact the sample and to transmit at least a portion of the radiation from the sample to the detector.
Abstract:
We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
Abstract:
We disclose apparatus that includes: (a) an enclosure including an aperture; (b) a prism mounted in the enclosure so that a surface of the prism is exposed through the aperture; (c) an optical assembly contained within the enclosure, the optical assembly including a radiation source and a radiation detector, the source being configured to direct radiation towards the prism and the detector being configured to detect radiation from the source reflected from the exposed surface of the prism; and (d) an electronic processor contained within the enclosure, the electronic processor being in communication with the detector. The apparatus can be configured so that, during operation, the electronic processor determines information about a sample placed in contact with the exposed surface of the prism based on radiation reflected from the exposed prism surface while it is in contact with the sample.
Abstract:
A method for determining the most likely composition of a sample, including obtaining data from a sample, wherein the data includes a representation of a measured spectrum; determining the precision state of the representation of the measured spectrum; providing a plurality of library candidates and, for each library candidate, providing data representing each library candidate, wherein the data includes a representation of a library spectrum; determining a representation of the similarity of the sample to each library candidate using (i) the representation of the measured spectrum; (ii) the precision state of the representation of the measured spectrum; and (iii) the representation of the library spectrum for that library candidate; determining the most likely composition of the sample based upon the determined representations of similarity of the sample to each library candidate; and displaying the most likely composition of the sample to a user.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.