Abstract:
A tissue homogenizer. The tissue homogenizer comprises a first chamber, a pair of blades, a first filter and a second filter. The first chamber has a first opening and a second opening. The blades are disposed in the first chamber. The first filter is disposed in the first chamber between the first opening and the blades. The second filter is disposed in the first chamber between the second opening and the blades. A tissue piece is placed between the first filter and the second filter cut by the blade, and moved by a fluid through the second filter to generate homogenized tissue pieces.
Abstract:
A spinal fusion device abutting and fixed between adjacent vertebrae. The spinal fusion device includes a support frame. The support frame has a plurality of extending bodies, each radially extending from a center of the support frame. A predetermined gap exists between every two adjacent extending bodies, receiving a bone graft.
Abstract:
A device for fixing soft tissue. A sleeve is detachably connected to a self-drilling tapping screw, moving and rotating the self-drilling tapping screw. A guide bar is detachably connected to the self-drilling tapping screw and fit in the sleeve. A fixing pin is fit in a washer and connected to the self-drilling tapping screw. The guide bar is detachably fit in the fixing pin. The fixing pin abuts the washer and the self-drilling tapping screw.
Abstract:
A process for preparing porous bioceramic materials includes the following steps: (a) using the cancellous bone of animals, (b) removing organic substances in the cancellous bone by thermal processing to obtain de-organic cancellous bone, (c) soaking the de-organic cancellous bone in a solution of phosphate salts, and (d) obtaining porous bioceramic materials by sintering up to 900.degree. C. or higher after dehydration. The porous bioceramic materials of the present invention are suitable for use as filling materials for bone defect.
Abstract:
A spinal cage is provided to be implanted in an intervertebral disc space. The spinal cage includes a first segment and a second segment movably connected with each other. The first segment is slidable with respect to the second segment, so as to elongate the spinal cage from a retracted state to an extended state.
Abstract:
A method for filling a bone defect in a subject in need thereof is disclosed. The method includes heating a bone cement composition at a first temperature where the bone cement composition is fluidic, and delivering an effective amount of the fluidic bone cement composition at a second temperature to the bone defect thereby filling the bone defect and allowing the fluidic bone cement composition to solidify, the second temperature being sufficiently high for maintaining the bone cement composition fluidic without causing thermal necrosis. Also disclosed are systems for carrying out the method.
Abstract:
One embodiment provides a method for enzymatic treatment, including the steps of forming a closed space on a local tissue area with a device and infusing an enzyme solution into the closed space for enzymatic treatment. The method according to the embodiment is capable of treating the local tissue area with enzymes for enhancing cell proliferation in the treated tissue area and preventing damage of the adjacent normal tissues. A device and kit used for the method are also provided.
Abstract:
An implant module for dragging a bone fragment toward a bone is provided. The bone fragment has a first through hole, and the bone has a second through hole. The implant module includes a screw and a stud. The screw has a first section fixed to the bone fragment and a second section provided with a first external thread on its outer surface. The stud is provided with a second external thread on its outer surface for being screwed into the second through hole of the bone. An end of the stud has a screw hole for being screwed with the second section of the screw via the first external thread. A method of repairing avulsion fracture by using the implant module is further provided.
Abstract:
A device for fixing soft tissue. A sleeve is detachably connected to a self-drilling tapping screw, moving and rotating the self-drilling tapping screw. A guide bar is detachably connected to the self-drilling tapping screw and fit in the sleeve. A fixing pin is fit in a washer and connected to the self-drilling tapping screw. The guide bar is detachably fit in the fixing pin. The fixing pin abuts the washer and the self-drilling tapping screw.
Abstract:
A kit for producing a foamed biocompatible material includes a container configured to sustain a high pressure, and a tissue-repair composition placed in the container. The composition contains a biocompatible material, a liquid carrier, and a gas. The container has an internal pressure of greater than 1 atm and less than 250 atm, and includes a valve and a nuzzle for releasing from the nuzzle a foam formed of the composition upon opening the valve. Methods of producing and applying the biocompatible material are also disclosed.