Abstract:
A semiconductor chip comprises a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern. The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region. The bond pad-wiring pattern is formed substantially in a center region of the semiconductor substrate. Thus, with the embodiments of the present invention, the overall chip size can thereby be substantially reduced and an MCP can be fabricated without the problems mentioned above.
Abstract:
A ballast for discharge lamp. The ballast for discharge lamp for utilizing high frequency voltage is generated by alternatively switching two switching elements to light the discharge lamp. The ballast includes a primary winding of a switching transformer to which the high frequency voltage is applied; a secondary winding of a switching transformer for alternatively switching the two switching elements according to reverse electromotive voltage generated by application of high frequency voltage to the primary winding; and a stabilizer for stabilizing reverse electromotive voltage generating at the secondary winding.
Abstract:
A patterned tape attached to a semiconductor chip in a chip scale package enhances process reliability in manufacturing of the chip scale package. A shape of the beam leads concentrates stresses in the part of the beam lead where the beam lead should be disconnected during the bonding of the beam leads to the chip bonding pads, and therefore, the part to be expected to be disconnected disconnects without damaging other parts of the beam lead. In addition, the reliability of a chip scale package is enhanced, because the beam lead attached to the chip bonding pad has little chance of being damaged during bonding.
Abstract:
Disclosed are an electric vehicle (EV), an EV charging stand, and a communication system therebetween, the EV including a charge control unit configured to detect a preparation state for charging a battery and output a resistance varying signal according to the detected state, and a resistor unit configured to vary a resistance value in response to the resistance varying signal, thus changing a voltage value of a state signal transmitted to the EV charging stand, and the EV charging stand including a comparator configured to receive a stage signal from the EV, compare a voltage value of the received state signal with a reference value, and output a signal in response to a result of comparing, and a control unit configured to receive the signal from the comparator and detect a preparation state for charging the battery of the EV.
Abstract:
Disclosed is a charging stand for an electric vehicle, the charging stand including a main body, a door coupled to the main body in such a way as to be opened or closed, and an alarm device generating an alarm if the door is opened, wherein the alarm device has a door sensing unit causing a change in impedance if the door is opened, a controller receiving a signal transmitted from the door sensing unit, and a switching circuit activated by the controller to generate an alarm or store an alarm history, so that the charging stand is advantageous in that the opening of the door can be precisely detected, and the alarm history can be checked later.
Abstract:
A semiconductor package includes a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern, The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region.
Abstract:
A semiconductor chip comprises a semiconductor substrate having integrated circuits formed on a cell region and a peripheral circuit region adjacent to each other. A bond pad-wiring pattern is formed on the semiconductor substrate. A pad-rearrangement pattern is electrically connected to the bond pad-wiring pattern. The pad-rearrangement pattern includes a bond pad disposed over at least a part of the cell region. The bond pad-wiring pattern is formed substantially in a center region of the semiconductor substrate. Thus, with the embodiments of the present invention, the overall chip size can thereby be substantially reduced and an MCP can be fabricated without the problems mentioned above.
Abstract:
The present invention relates to a skin cosmetic product containing 3,9-diferulylcoumestrol, especially to a skin cosmetic product containing a compound in which ferulylic acid is bonded to a coumestrol. The skin cosmetic product has several excellent effects for improving cosmetic disorders, such as anti-aging effect, whitening effect and hair-seeding effect.