Abstract:
Various example embodiments are disclosed. According to an example embodiment, an apparatus may include a continuous time filter, a decision feedback equalizer, a clock and data recovery circuit, and an adaptation circuit. The adaptation circuit may be configured to adapt equalization according to at least one dithering algorithm by adjusting a delay adjust signal based on a mean square error of equalized data signals.
Abstract:
Equalization is provided in a high speed communication receiver that includes in various aspects an automatic gain control input stage, a decision feedback equalizer, a clock and data recovery circuit and equalization control circuits. The automatic gain control stage may include a continuous time filter with an adjustable bandwidth. A threshold adjust signal may be applied to the output of the automatic gain control stage. The equalization control circuits may be implemented in the digital domain and operate at a lower clock speed than the data path.
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface module includes a line side interface, a board side interface, and a signal conditioning circuit. The line side interface includes a media coupler that receives the line side media, such as copper media or optical media. The board side interface couples the high-speed serial bit stream interface module to the PCB. A signal conditioning circuit communicatively couples to the line side interface and to the board side interface. The signal conditioning circuit receives an RX signal from the line side interface, conditions the RX signal, and provides the RX signal to the board side interface. The signal conditioning circuit receives a TX signal from the board side interface, conditions the TX signal, and provides the TX signal to the board side interface.
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface module includes a line side interface, a board side interface, and a signal conditioning circuit. The line side interface includes a media coupler that receives the line side media, either copper media or optical media. The board side interface couples the high-speed serial bit stream interface module to the PCB. A signal conditioning circuit communicatively couples to the line side interface and to the board side interface. The signal conditioning circuit receives an RX signal from the line side interface, conditions the RX signal, and provides the RX signal to the board side interface. The signal conditioning circuit receives a TX signal from the board side interface, conditions the TX signal, and provides the TX signal to the board side interface.
Abstract:
Aspects of the invention may provide a method and system for adjusting a gain and/or a frequency response of an input signal for a multimode PHY device. A signal divider (704) may apportion the input signal into a gain adjustment signal and/or an equalization adjustment signal upon receipt of the input signal. A signal adjuster (702) coupled to the signal divider (704) may adjust a gain of the apportioned gain adjustment signal within the multimode PHY device (130). An equalizer (706) coupled to the signal divider (704) may be configured to equalize the equalization adjustment signal within the multimode PHY device (130). A summer (708) coupled to the equalizer (706) and signal adjuster (702) may be adapted to sum the adjusted adjustment signal and the equalized equalization adjustment signal within the multimode PHY device (130) to create an output equalized signal (712) having a desired gain and/or frequency response.
Abstract:
Equalization is provided in a high speed communication receiver that includes in various aspects an automatic gain control input stage, a decision feedback equalizer, a clock and data recovery circuit and equalization control circuits. The automatic gain control stage may include a continuous time filter with an adjustable bandwidth. A threshold adjust signal may be applied to the output of the automatic gain control stage. The equalization control circuits may be implemented in the digital domain and operate at a lower clock speed than the data path.
Abstract:
A circuit and method is disclosed for self trimming in frequency acquisition and clock recovery. The circuit can be simplified as having a VCO in communication with three loops including a trimming loop, a frequency loop and a phase loop. The trimming loop includes a ramp generator for supplying a steady increase of bias current to the VCO causing the frequency of the VCO to increase. At each step, the averaged output of the frequency detector is measured by a comparator. A decision circuit included in the trimming loop registers the output of the comparator in digital format. The trimming loop continues until the decision circuit detects a long string of positives followed by a long string of negatives and at this point, the trimming loop is shut off and the frequency loop is in operation. The frequency loop drives the VCO frequency to within a small difference of the incoming data frequency. The phase loop cleans up the data and locks the phase.
Abstract:
Methods, systems and computer-readable media for optimizing SerDes system parameters based on a bit error rate detected by a forward error correction unit (FEC). A SerDes receiver receives a data stream over a link and uses a FEC to detect error information in the received data stream. The system tunes and optimizes one or more SerDes system parameters using the detected error information. The system minimizes power consumption by decreasing power supply voltage until a maximum acceptable input error rate threshold is reached. The FEC allows the system to tolerate errors in the input data stream up to the threshold while preventing propagation of these errors in the FEC output data stream.
Abstract:
Methods, systems and devices for dynamically controlling resolution of an analog-to-digital converter (ADC). The ADC receives an analog input signal and outputs digital data. A statistical unit coupled to the ADC obtains samples of the output signal and transmits a control signal to the ADC to adjust the resolution of the ADC. The control signal is generated by the statistical unit based on a comparison of at least one performance indicator with a target performance level. The at least one performance indicator is calculated using the samples.
Abstract:
A high-speed bit stream interface module interfaces a high-speed communication media to a communication Application Specific Integrated Circuit (ASIC) via a Printed Circuit Board (PCB). The high-speed bit stream interface includes a line side interface, a board side interface, and a signal conditioning circuit. The signal conditioning circuit services each of an RX path and a TX path and includes a limiting amplifier and a clock and data recovery circuit. The signal conditioning circuit includes an AGC loop, an equalizer, and an equalizer feedback loop. The AGC loop includes a gain path and a feedback path that couples to the output of the equalizer. The equalizer feedback loop couples to the output of the equalizer and produces spectral shaping control settings that the equalizer uses to produce an equalized high-speed serial bit stream at an equalizer output.