Abstract:
In a method of forming a layer using an atomic layer deposition process, after a substrate is loaded into a chamber, a reactant is provided onto the substrate to form a preliminary layer. Atoms in the preliminary layer are partially removed from the preliminary layer using plasma formed from an inert gas such as an argon gas, a xenon gas or a krypton gas, or an inactive gas such as an oxygen gas, a nitrogen gas or a nitrous oxide gas to form a desired layer. Processes for forming the desired layer may be simplified. A highly integrated semiconductor device having improved reliability may be economically manufactured so that time and costs required for the manufacturing of the semiconductor device may be reduced.
Abstract:
A conductive contact plug extends through an opening in the dielectric layer to contact the substrate and includes a widened pad portion extending onto the dielectric layer adjacent the opening. An ohmic pattern is disposed on the pad portion of the plug, and a barrier pattern is disposed on the ohmic pattern. A concave first capacitor electrode is disposed on the barrier pattern and defines a cavity opening away from the substrate. A capacitor dielectric layer conforms to a surface of the first capacitor electrode and a second capacitor electrode is disposed on the capacitor dielectric layer opposite the first capacitor electrode. Sidewalls of the ohmic pattern, the barrier pattern and the pad portion of the contact plug may be substantially coplanar, and the device may further include an etch stopper layer conforming to at least sidewalls of the ohmic pattern, the barrier pattern and the pad portion of the contact plug. Related fabrication methods are described.
Abstract:
Methods of supplying a source to a reactor include charging a gaseous source into a charging volume by selectively activating a source charger coupled between the charging volume and a source reservoir. The gaseous source is then supplied from the charging volume into a deposition process reactor by selectively activating a source supplier coupled between the charging volume and the reactor after the gaseous source in the charging volume attains a desired internal pressure. Apparatus for supplying a source and methods and apparatus for depositing an atomic layer are also provided.
Abstract:
A semiconductor device includes a substrate including an NMOS region, a fin active region protruding from the substrate in the NMOS region, the fin active region including an upper surface and a sidewall, a gate dielectric layer on the upper surface and the sidewall of the fin active region, a first metal gate electrode on the gate dielectric layer, the first metal gate electrode having a first thickness at the upper surface of the fin active region and a second thickness at the sidewall of the fin active region, and a second metal gate electrode on the first metal gate electrode, the second metal gate electrode having a third thickness at the upper surface of the fin active region and a fourth thickness at the sidewall of the fin active region, wherein the third thickness is less than the fourth thickness.
Abstract:
A method of fabricating a semiconductor device includes sequentially forming a first gate insulating layer and a second gate insulating layer on a substrate, implanting impurity ions into the substrate and performing a first thermal process for activating the impurity ions to form a source and drain region, and forming a third gate insulating layer on the substrate after the first thermal process has been completed.
Abstract:
A non-volatile memory device includes a tunnel insulating layer pattern on a channel region of a substrate, a charge trapping layer pattern on the tunnel insulating layer pattern, a blocking layer pattern on the charge trapping layer pattern, and a gate electrode including a conductive layer pattern on the blocking layer pattern and a barrier layer pattern on the conductive layer pattern. The conductive layer pattern includes a metal.
Abstract:
A method of forming a high dielectric film using atomic layer deposition (ALD), and a method of manufacturing a capacitor having the high dielectric film, include supplying a precursor containing a metal element to a semiconductor substrate and purging a reactor; supplying an oxidizer and purging the reactor; and supplying a reaction source containing nitrogen and purging the reactor.
Abstract:
Multi-layered structures formed using atomic-layer deposition processes include multiple metal oxide layers wherein the metal oxide layers are formed without the presence of interlayer oxide layers and may include different metal oxide compositions.
Abstract:
In a method of manufacturing a dielectric structure, after a first dielectric layer is formed on a substrate by using a metal oxide doped with silicon, the substrate is placed on a susceptor of a chamber. By treating the first dielectric layer with a plasma in controlling a voltage difference between the susceptor and a ground, a second dielectric layer is formed on the first dielectric layer. The second dielectric layer including a metal oxynitride doped with silicon having enough content of nitrogen is formed on the first dielectric layer. Therefore, dielectric properties of the dielectric structure comprising the first and the second dielectric layers can be improved and a leakage current can be greatly decreased. By adapting the dielectric structure to a gate insulation layer and/or to a dielectric layer of a capacitor or of a non-volatile semiconductor memory device, capacitances and electrical properties can be improved.
Abstract:
Example embodiments of the present invention disclose a non-volatile semiconductor memory device, which may include a dielectric layer having an enhanced dielectric constant. A tunnel oxide layer pattern and a floating gate may be sequentially formed on a substrate. A dielectric layer pattern including metal oxide doped with Group III transition metals may be formed on the floating gate using a pulsed laser deposition process. The dielectric layer pattern having an increased dielectric constant may be formed of metal oxide doped with a transition metal such as scandium, yttrium, or lanthanum.