摘要:
According to example embodiments, a semiconductor device includes a plurality of active pillars protruding from a substrate. Each active pillar includes a channel region between upper and lower doped regions. A contact gate electrode faces the channel region and is connected to a word line. The word line extends in a first direction. A bit line is connected to the lower doped region and extends in a second direction. The semiconductor device further includes a string body connection portion that connects the channel region of at least two adjacent active pillars of the plurality of active pillars.
摘要:
A method of performing write operations in a memory device including a plurality of banks is performed. Each bank includes two or more sub-banks including at least a first sub-bank and a second sub-bank. The method comprises: performing a first row cycle for writing to a first word line of the first sub-bank, the first row cycle including a plurality of first sub-periods, each sub-period for performing a particular action; and performing a second row cycle for writing to a first word line of the second sub-bank, the second row cycle including a plurality of second sub-periods of the same type as the plurality of first sub-periods. The first row cycle overlaps with the second row cycle, and a first type sub-period of the first sub-periods overlaps with a second type sub-period of the second sub-periods, the first type and second type being different types.
摘要:
A memory device includes a hash table storing a hash value, a bit value, and a page address for each of a plurality of pages, a memory cell unit configured to store the pages and output contents corresponding to the page addresses of the pages having a same hash value, and a controller including a comparator configured to compare the contents output from the memory cell unit and change at least one bit value associated with a respective one of the pages upon determining that the contents of the pages are the same.
摘要:
Semiconductor memory devices include a first storage layer and a second storage layer, each of which includes at least one array, and a control layer for controlling access to the first storage layer and the second storage layer so as to write data to or read data from the array included in the first storage layer or the second storage layer in correspondence to a control signal. A memory capacity of the array included in the first storage layer is different from a memory capacity of the array included in the second storage layer.
摘要:
A data line layout structure comprises a plurality of first data lines, second data lines, a third data line, a first data line driver, and a second data line driver. The plurality of first data lines are connected to sub mats in a memory mat so that a predetermined number of first data lines are connected to each sub mat. The second data lines are disposed in a smaller quantity than the number of the first data lines so as to form a hierarchy with respect to the first data lines. The third data line is disposed to form a hierarchy with respect to the second data lines, and transfers data provided through the second data lines to a data latch. The first data line driver is connected between the first data lines and the second data lines, and performs a logical ORing operation for output of the first data lines so as to drive a corresponding second data line. The second data line driver is connected between the second data lines and the third data line, and performs a logical ORing operation for output of the second data lines so as to drive the third data line.
摘要:
A semiconductor memory device has a hierarchical bit line structure. The semiconductor memory device may include first and second memory cell clusters, which share the same bit line pair and are divided operationally; third and fourth memory cell clusters, which are connected respectively corresponding to word lines coupled with the first and second memory cell clusters, and which share a bit line pair different from the bit line pair and are divided operationally; and a column pass gate for switching one of bit line pairs connected with the first to fourth memory cell clusters, to a common sense amplifier, in response to a column selection signal. Whereby an operating speed decrease caused by load of peripheral circuits connected to the bit line is improved, and the number of column pass gates is reduced substantially with a reduction of chip size.
摘要:
A synchronous burst semiconductor memory device operating in synchronism with at least one external clock signal and capable of accessing data on every edge of the external clock signal is provided. The burst memory device includes a clock generator for generating a number of data output/input strobe clock signals synchronized with the external clock signal in response to a plurality of input information signals, and a data-out/in buffer for outputting/inputting internal/external data in synchronism with the data output/input strobe clock signals.
摘要:
At least one refresh without scrubbing is performed on a corresponding portion of the memory device with a first frequency. In addition, at least one refresh with scrubbing is performed on a corresponding portion of the memory device with a second frequency less than the first frequency. Accordingly, refresh operations with data scrubbing are performed to prevent data error accumulation. Furthermore, refresh operations without data scrubbing are also performed to reduce undue power consumption from the data scrubbing.
摘要:
A memory module includes a plurality of memory devices and a buffer chip. The buffer chip manages the memory devices. The buffer chip includes a refresh control circuit that groups a plurality of memory cell rows of the memory devices into a plurality of groups according to a data retention time of tire memory cell rows. The buffer chip selectively refreshes each of the plurality of groups in each of a plurality of refresh time regions that are periodically repeated and applies respective refresh periods to the plurality of groups, respectively.
摘要:
A method of performing write operations in a memory device including a plurality of bank is performed. Each bank includes two or more sub-banks including at least a first sub-bank and a second sub-bank. The method comprises: performing a first row cycle for writing to a first word line of the first sub-bank, the first row cycle including a plurality of first sub-periods, each sub-period for performing a particular action; and performing a second row cycle for writing to a first word line of the second sub-bank, the second row cycle including a plurality of second sub-periods of the same type as the plurality of first sub-periods. The first row cycle overlaps with the second row cycle, and a first type sub-period of the first sub-periods overlaps with a second type sub-period of the second sub-periods, the first type and second type being different types.