Abstract:
A programming method of a semiconductor memory device includes charging a channel of an inhibit string to a precharge voltage provided to the common source line and boosting the charged channel by providing a wordline voltage to the cell strings. The inhibit string is connected to a program bitline among the bitlines.
Abstract:
A semiconductor device includes a semiconductor substrate including a first region having a cell region and a second region having a peripheral circuit region, first transistors on the semiconductor substrate, a first protective layer covering the first transistors, a first insulation layer on the first protective layer, a semiconductor pattern on the first insulation layer in the first region, second transistors on the semiconductor pattern, a second protective layer covering the second transistors, the second protective layer having a thickness greater than that of the first protective layer, and a second insulation layer on the second protective layer and the first insulation layer of the second region.
Abstract:
An inverter/charger integrated device is provided. The inverter/charger integrated device includes: a three-phase motor; a rectifying unit configured to rectify AC power for charging a battery and output the rectified AC power to a neutral point of the three-phase motor; a rectifier/inverter integrated unit configured to be connected to the rectifying unit and charge the battery; and a control unit configured to control the charging of the battery and an operation of the three-phase motor.
Abstract:
A stack-type semiconductor device and a method of manufacturing the same are provided. The stack-type semiconductor device includes an insulation layer on a single-crystalline substrate, a contact plug penetrating the insulation layer to contact the single-crystalline substrate, an upper semiconductor pattern including an impurity region and a gate structure positioned between the impurity regions on the upper semiconductor pattern. An upper surface of the contact plug contacts a lower surface of the semiconductor pattern. An operation failure of the stack-type semiconductor device is reduced since the upper semiconductor pattern is electrically connected to the single-crystalline semiconductor substrate.
Abstract:
Provided is a non-volatile memory device including first and second, vertically stacked semiconductor substrates, a plurality of non-volatile memory cell transistors formed in a row on the first and second semiconductor substrates, and a plurality of word lines connected to gates of the plurality of non-volatile memory cell transistors. The plurality of non-volatile memory cell transistors are grouped into two or more memory cell blocks, such that a first voltage is applied to the first semiconductor substrate including a first memory cell block to be erased, and either (1) a second voltage less than the first voltage and greater than 0V is applied to the second semiconductor substrate not including the first memory cell block, or (2) the second semiconductor substrate not including the first memory cell block is allowed to electrically float.
Abstract:
A memory device having a vertical channel structure is disclosed. The memory device includes a plurality of gate lines extending substantially parallel to one another along a surface of a substrate, and a connection unit electrically connecting the plurality of gate lines. The connection unit includes a first portion laterally extending along the surface of the substrate, a second portion extending substantially perpendicular to the surface of the substrate, and a supporting insulating layer extending in a cavity defined by the first and second portions of the connection unit. Related fabrication methods are also discussed.
Abstract:
A driving method of a three-dimensional memory device having a plurality of layers is provided. One of the layers is selected. A well of the selected layer is biased with a first well voltage. A word line voltage is applied to a selected word line of the selected layer. A well of an unselected layer is biased with a second well voltage higher than the first well voltage.
Abstract:
A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
Abstract:
A non-volatile memory device having a vertical structure includes a NAND string having a vertical structure. The NAND string includes a plurality of memory cells, and at least one pair of first selection transistors arranged to be adjacent to a first end of the plurality of memory cells. A plurality of word lines are coupled to the plurality of memory cells of the NAND string. A first selection line is commonly connected to the at least one pair of first selection transistors of the NAND string.
Abstract:
An SRAM device includes a substrate having at least one cell active region in a cell array region and a plurality of peripheral active regions in a peripheral circuit region, a plurality of stacked cell gate patterns in the cell array region, and a plurality of peripheral gate patterns disposed on the peripheral active regions in the peripheral circuit region. Metal silicide layers are disposed on at least one portion of the peripheral gate patterns and on the semiconductor substrate near the peripheral gate patterns, and buried layer patterns are disposed on the peripheral gate patterns and on at least a portion of the metal silicide layers and the portions of the semiconductor substrate near the peripheral gate patterns. An etch stop layer and a protective interlayer-insulating layer are disposed around the peripheral gate patterns and on the cell array region. Methods of forming an SRAM device are also disclosed.