Abstract:
Methods of ONO integration into MOS flow are provided. In one embodiment, the method comprises: (i) forming a pad dielectric layer above a MOS device region of a substrate; and (ii) forming a patterned dielectric stack above a non-volatile device region of the substrate, the patterned dielectric stack comprising a tunnel layer, a charge-trapping layer, and a sacrificial top layer, the charge-trapping layer comprising multiple layers including a first nitride layer formed on the tunnel layer and a second nitride layer, wherein the first nitride layer is oxygen rich relative to the second nitride layer. Other embodiments are also described.
Abstract:
A method of making a semiconductor structure is provided. The method includes forming a dielectric layer using a high density plasma oxidation process. The dielectric layer is on a storage layer and the thickness of the storage layer is reduced during the high density plasma oxidation process.
Abstract:
Embodiments of a method of integration of a non-volatile memory device into a MOS flow are described. Generally, the method includes: forming a dielectric stack on a surface of a substrate, the dielectric stack including a tunneling dielectric overlying the surface of the substrate and a charge-trapping layer overlying the tunneling dielectric; forming a cap layer overlying the dielectric stack; patterning the cap layer and the dielectric stack to form a gate stack of a memory device in a first region of the substrate and to remove the cap layer and the charge-trapping layer from a second region of the substrate; and performing an oxidation process to form a gate oxide of a MOS device overlying the surface of the substrate in the second region while simultaneously oxidizing the cap layer to form a blocking oxide overlying the charge-trapping layer. Other embodiments are also disclosed.
Abstract:
A semiconductor devices including non-volatile memories and methods of fabricating the same to improve performance thereof are provided. Generally, the device includes a memory transistor comprising a polysilicon channel region electrically connecting a source region and a drain region formed in a substrate, an oxide-nitride-nitride-oxide (ONNO) stack disposed above the channel region, and a high work function gate electrode formed over a surface of the ONNO stack. In one embodiment the ONNO stack includes a multi-layer charge-trapping region including an oxygen-rich first nitride layer and an oxygen-lean second nitride layer disposed above the first nitride layer. Other embodiments are also disclosed.
Abstract:
An embodiment of a nonvolatile charge trap memory device is described. In one embodiment, the device comprises a channel comprising silicon overlying a surface on a substrate electrically connecting a first diffusion region and a second diffusion region of the memory device, and a gate stack intersecting and overlying at least a portion of the channel, the gate stack comprising a tunnel oxide abutting the channel, a split charge-trapping region abutting the tunnel oxide, and a multi-layer blocking dielectric abutting the split charge-trapping region. The split charge-trapping region includes a first charge-trapping layer comprising a nitride closer to the tunnel oxide, and a second charge-trapping layer comprising a nitride overlying the first charge-trapping layer. The multi-layer blocking dielectric comprises at least a high-K dielectric layer.
Abstract:
An embodiment of a semiconductor device includes a non-volatile memory transistor including an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate, the ONO dielectric stack comprising a multilayer charge storage layer including a silicon-rich, oxygen-lean top silicon oxynitride layer and a silicon-rich, oxygen-rich bottom silicon oxynitride layer, and a metal oxide semiconductor (MOS) logic transistor including a gate oxide and a high work function gate electrode.
Abstract:
A semiconductor device including a silicon-oxide-oxynitride-oxide-silicon structure and methods of forming the same are provided. Generally, the structure comprises: a tunnel oxide layer on a surface of a substrate including silicon; a multi-layer charge storing layer including an oxygen-rich, first oxynitride layer on the tunnel oxide layer in which the stoichiometric composition of the first oxynitride layer results in it being substantially trap free, and an oxygen-lean, second oxynitride layer on the first oxynitride layer in which the stoichiometric composition of the second oxynitride layer results in it being trap dense; a blocking oxide layer on the second oxynitride layer; and a silicon containing gate layer on the blocking oxide layer. Other embodiments are also disclosed.
Abstract:
A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.
Abstract:
In one embodiment, a self-aligned contact (SAC) trench structure is formed through a dielectric layer to expose an active region of a MOS transistor. The SAC trench structure not only exposes the active region for electrical connection but also removes portions of a stress liner over the active region. This leaves the stress liner mostly on the sidewall and top of the gate of the MOS transistor. Removing portions of the stress liner over the active region substantially removes the lateral component of the strain imparted by the stress liner on the substrate, allowing for improved drive current without substantially degrading a complementary MOS transistor.
Abstract:
In one embodiment, a gate of a transistor is formed by performing a first thermal treatment on a silicon layer, forming a metal stack over the silicon layer, and performing a second thermal treatment on the metal stack. The first thermal treatment may be a rapid thermal annealing step, while the second thermal treatment may be a rapid thermal nitridation step. The resulting gate exhibits relatively low interface contact resistance between the silicon layer and the metal stack, and may thus be advantageously employed in high-speed devices.