Abstract:
A tyre for a wheel of a vehicle comprises a toroidal carcass provided with axially opposite sidewalls and beads for anchoring the tyre to a rim of the wheel, a tread band located crownwise on the carcass, comprising a surface with a plurality of hollows and grooves defining a raised tread pattern, and a belt structure interposed between the carcass and the tread band, axially extending between the sidewalls. The tread band comprises at least first and second circumferential axially-contiguous portions arranged to contact a road surface. The first portion is formed of a first composition comprising a reinforcing filler having at least 40%-by-weight carbon black and at least some white filler, the second portion is formed of a second composition comprising a reinforcing filler having at least 20%-by-weight white filler, and the first composition is different from the second composition. A difference of compositions between the at least first and second portions achieves a tyre operating temperature lower than a reference temperature.
Abstract:
A system for monitoring the deformations of a moving tyre fitted on a rim associated with a vehicle includes a moving station associated with the rim and a fixed station associated with the vehicle. The moving station includes a device for measuring the deformations in at least one predetermined direction, a unit for supplying power to the measuring device, and a device for enable the unit to supply the power. The fixed station receives information related to the deformation measurements from the moving station. A method for monitoring deformations of a moving tyre fitted on a rim includes enabling the moving station, activating the moving station to measure the deformations, and receiving information related to the deformation measurements. A related wheel for a vehicle includes a tyre, a rim, and the moving station.
Abstract:
A tyre for vehicle wheels has a pair of beads (5) each having a frusto-conical rest surface (5a) and showing a cross-section profile converging towards the rotation axis of the tyre (1) away from an equatorial plane (X-X) of same. Each bead (5) incorporates an annular anchoring structure (4) comprising an anchoring portion (16) of a flattened profile extending in parallel to the rest surface (5a), and a stiffening portion (12) extending in a radial direction. Associated with the carcass structure (2) is a circumferential centring ridge (20) radially jutting out within the tyre (1) at a crown portion of the latter. Also described is a rim (23) provided with engagement seats (24) the shape of which matches that of the beads (5) and with a guide race (25) conforming in shape to the centring ridge (20).
Abstract:
A method of making a tire includes forming at least one first carcass ply of a structure, forming at least one circumferentially-inextensible annular structure, and applying the at least one circumferentially-inextensible annular structure to a region close to inner cicumferential edges of the at least one first carcass ply. Forming the at least one first carcass ply includes preparing first strip lengths, each first strip length including longitudinal and parallel thread elements at least partly coated with at least one layer of raw elastomer material, and depositing the first strip lengths onto a toroidal support to define two side portions and a crown portion. The crown portions are disposed consecutively in side-by-side relationship along a circumferential extension of the toroidal support. The side portions of each first strip length cover in part or are partly covered by a side portion of at least one circumferentially-consecutive first strip length.
Abstract:
A carcass structure for a vehicle wheel tyre includes at least one carcass ply comprising thread elements substantially disposed transversely of a circumferential extension of the carcass structure, and at least one pair of annular reinforcing structures disposed close to respective inner circumferential edges of the at least one carcass ply. Each of the annular reinforcing structures includes at least one first circumferentially-inextensible annular insert formed of at least one first elongated element extending in concentric coils, and at least one second circumferentially-inextensible annular insert formed of at least one second elongated element extending in concentric coils. The at least one carcass ply has end flaps each turned back around an inner circumferential edge of a respective first annular insert and each axially interposed between respective first and second annular inserts. A method of manufacturing the carcass structure is also disclosed.
Abstract:
A method for curing a tyre includes the steps of closing the tyre in a mould, heating at least one lower hot table, at least one upper hot table, and at least one annular hot table to transmit heat to the tyre. The at least one lower hot table, the at least one upper hot table, and the at least one annular hot table are associated with the mould. The at least one annular hot table is thermally-connected to a circumferential development of the mould. A quantity of heat provided to the at least one lower hot table is different from a quantity of heat provided to the at least one upper hot table. An associated apparatus includes a mould; at least one lower, upper, and annular tables; and devices for supplying one or more heating fluids to the at least one lower, upper, and annular tables.
Abstract:
A self-supporting tire for vehicle wheels includes a carcass structure having at least one carcass ply, a belt structure, a tread band, at least one pair of sidewalls, and at least one pair of resilient stiffening inserts incorporated into the carcass structure. The at least one carcass ply includes axially-inner strip lengths and axially-outer strip lengths, and may also include axially-intermediate strip lengths. Each of the strip lengths extend in a U-shaped configuration around a cross-section outline of the carcass structure to define two side portions spaced apart from each other in an axial direction and a crown portion extending at a radially-outer position between the side portions. The resilient stiffening inserts are axially interposed between the side portions of the axially-inner strip lengths and the side portions of the axially-outer strip lengths.
Abstract:
A method of manufacturing a tire for a vehicle wheel includes making a carcass structure, applying a belt structure to the carcass structure, applying a tread band to the belt structure, and applying at least one pair of sidewalls to the carcass structure. Making the carcass structure includes applying at least one first part of the at least one carcass ply on a toroidal support, applying at least one circumferentially-inextensible annular anchoring insert, and applying at least one stiffening element. The at least one annular anchoring insert includes a cross-sectional profile of flattened conformation, extending away from an equatorial plane of the tire. The at least one stiffening element includes at least one main portion with a cross-sectional profile tapering away from a rotation axis of the tire. The at least one main portion is located substantially at an axially-inner position relative to the at least one annular anchoring insert.
Abstract:
A tire for vehicle wheels includes a carcass, a tread strip, and a belt structure. The carcass has a central crown portion and two axially opposite sidewalls terminating in a pair of beads. Each bead includes at least one circumferentially unextendable annular reinforcing core having a series of spirals of metal wire radially superimposed and axially arranged alongside each other. The carcass has a reinforcing structure including at least one ply of rubberized fabric reinforced with metal cords lying in radial planes containing an axis of rotation of the tire. The reinforcing structure includes ends secured to the annular reinforcing cores and a neutral profile, lying in a radial cross-sectional plane, axially extending from bead to bead. The neutral profile intersects a cross section of a zone enclosing the annular reinforcing cores and has a continuous curvature devoid of inflection points along an extension between the beads.
Abstract:
A method for monitoring and/or controlling the behavior of a vehicle including at least one wheel includes determining one or more values of deformation of a tire of the at least one wheel by measuring the one or more values using a first signal emitted between a rim of the at least one wheel and a casing of the tire, providing a database comprising predetermined values of deformation of the tire that correspond to a behavior of the at least one wheel, comparing the measured one or more values of deformation with one or more of the predetermined values of deformation, and emitting a second signal dependent on at least one result of the comparison for monitoring and/or controlling the behavior of the vehicle. The one or more values of deformation are determined in vertical, transverse, and longitudinal directions or along the axes of a three-dimensional Cartesian coordinate system.