Abstract:
An electrode catalyst including two or more metal components used in an anode and/or a cathode of a proton exchange membrane fuel cell (PEMFC) or a direct methanol fuel cell (DMFC), a method of preparing the same, and a fuel cell including the electrode catalyst. The electrode catalyst includes an active Pt-based metal and an inactive La-based metal. By including the inactive metal component in the electrode catalyst, in addition to the active Pt-based metal component, higher catalyst activity can be obtained, and the amount of the expensive Pt-based metal can be decreased so that the fuel cell can be produced at relatively low costs. In addition, the active Pt-based metal and the inactive La-based metal are uniformly distributed so that agglomeration of the active Pt-based metal can be blocked (or prevented) and thus the catalyst activity can be maintained constant for a relatively long period of time.
Abstract:
Provided are a surface electron emission device and a display device having the same. The surface electron emission device may include a lower electrode, an insulating layer, and an upper electrode sequentially stacked, and a nano structure layer formed on the upper electrode.
Abstract:
A storage node having a metal-insulator-metal structure, a non-volatile memory device including a storage node having a metal-insulator-metal (MIM) structure and a method of operating the same are provided. The memory device may include a switching element and a storage node connected to the switching element. The storage node may include a first metal layer, a first insulating layer and a second metal layer, sequentially stacked, and a nano-structure layer. The storage node may further include a second insulating layer and a third metal layer. The nano-structure layer, which is used as a carbon nano-structure layer, may include at least one fullerene layer.
Abstract:
Provided is a method of operating a phase change random access memory comprising a switching device and a storage node comprising a phase change layer. The method includes applying a reset current passing through the phase change layer from a lower portion of the phase change layer toward an upper portion of the phase change layer and being smaller than 1.6 mA to the storage node to change a portion of the phase change layer into an amorphous state. The set voltage is in an opposite direction is exemplary embodiments, and a connector is of small cross-sectional area.
Abstract:
A rechargeable lithium battery includes a positive electrode having a positive active material to reversibly intercalate and deintercalate lithium ions, a negative electrode having a negative active material, and an electrolyte, wherein an arithmetic mean Ra of a surface roughness of the positive electrode is 155 to 419 nm, and an arithmetic mean Ra of a surface roughness of the negative electrode is 183 to 1159 nm after the rechargeable lithium battery is charged and discharged.
Abstract:
A conductive paste including a conductive powder, a metallic glass, and an organic vehicle, wherein the metallic glass has a resistivity that is decreased when the metallic glass is heat treated at a temperature that is higher than a glass transition temperature of the metallic glass.
Abstract:
Disclosed are a heat dissipation material comprising a metallic glass and an organic vehicle and a light emitting diode package including at least one of a junction part, wherein the junction part includes a heat dissipation material including a metallic glass.
Abstract:
A dichalcogenide thermoelectric material having a very low thermal conductivity in comparison with a conventional metal or semiconductor is described. The dichalcogenide thermoelectric material has a structure of Formula 1 below: RX2-aYa Formula 1 wherein R is a rare earth or transition metal magnetic element, X and Y are each independently an element selected from the group consisting of S, Se, Te, P, As, Sb, Bi, C, Si, Ge, Sn, B, Al, Ga, In, and a combination thereof, and 0≦a
Abstract translation:描述了与常规金属或半导体相比具有非常低热导率的二硫属元素化物质热电材料。 二硫属元素化物热电材料具有以下结构:RX2-aYa1其中R是稀土或过渡金属磁性元素,X和Y各自独立地选自S,Se,Te,P, As,Sb,Bi,C,Si,Ge,Sn,B,Al,Ga,In及其组合,0 @ a <2。
Abstract:
A thermoelectric material, and a thermoelectric element and a thermoelectric module including the thermoelectric material are disclosed. The thermoelectric material may have improved thermoelectric properties by irradiating the thermoelectric material with accelerated particles such as protons, neutrons, or ion beams. Thus, the thermoelectric material having excellent thermoelectric properties may be efficiently applied to various thermoelectric elements and thermoelectric modules.
Abstract:
Disclosed is a lithium secondary battery including a positive electrode including a positive active material; a negative electrode including a negative active material; a separator interposed between the positive and negative electrodes; and an electrolyte, where an alkaline metal powder layer is formed by dispersion coating on a surface of at least one of the positive and negative electrodes and the separator.