Abstract:
A light emitting device includes a board and a light emitting element mounted on the board, emitting light having a wavelength of 250 nm to 500 nm. A red fluorescent layer is formed on the element and includes a red phosphor (M1−x1Eux1)aSibAlOcNd having a semicircular shape with a radius r, where M is an element that is selected from IA group elements, IIA group elements, IIIA group elements, IIIB group elements except Aluminum, rare-earth elements, and IVB group elements. An intermediate layer is formed on the red fluorescent layer, being made of transparent resin, having a semicircular shape with a radius D; and a green fluorescent layer is formed on the intermediate layer, including a green phosphor, having a semicircular shape. A relationship between the radius r and the radius D is 2.0r(μm)≦D≦(r+1000)(μm).
Abstract:
According to one embodiment, a semiconductor light emitting device includes a stacked structure unit, a transparent, p-side and n-side electrodes. The unit includes n-type semiconductor layer, a light emitting portion provided on a part of the n-type semiconductor layer and p-type semiconductor layer provided on the light emitting portion. The transparent electrode is provided on the p-type semiconductor layer. The p-side electrode is provided on the transparent electrode. The n-side electrode is provided on the n-type semiconductor layer. The transparent electrode has a hole provided between the n-side and p-side electrodes. A width of the hole along an axis perpendicular to an axis from the p-side electrode toward the n-side electrode is longer than widths of the n-side and p-side electrodes. A distance between the hole and the n-side electrode is not longer than a distance between the hole and the p-side electrode.
Abstract:
According to one embodiment, a semiconductor light emitting device includes an n-type semiconductor layer, a p-type semiconductor layer and a light emitting layer. The emitting layer is provided between the n-type layer and the p-type layer, and includes a plurality of barrier layers and a plurality of well layers, being alternately stacked. The p-side barrier layer being closest to the p-type layer among the plurality of barrier layer includes a first layer and a second layer, containing group III elements. An In composition ratio in the group III elements of the second layer is higher than an In composition ratio in the group III elements of the first layer. An average In composition ratio of the p-side layer is higher than an average In composition ratio of an n-side barrier layer that is closest to the n-type layer among the plurality of barrier layers.
Abstract:
The embodiment provides a red light-emitting fluorescent substance represented by the following formula (1): (M1-xECx)aM1bAlOcNd (1). In the formula (1), M is an element selected from the group consisting of IA group elements, IIA group elements, IIIA group elements, IIIB group elements, rare earth elements and IVA group elements; EC is an element selected from the group consisting of Eu, Ce, Mn, Tb, Yb, Dy, Sm, Tm, Pr, Nd, Pm, Ho, Er, Cr, Sn, Cu, Zn, As, Ag, Cd, Sb, Au, Hg, Tl, Pb, Bi and Fe; M1 is different from M and is selected from the group consisting of tetravalent elements; and x, a, b, c and d are numbers satisfying the conditions of 0
Abstract:
According to one embodiment, a semiconductor light emitting device includes n-type and p-type semiconductor layers, barrier layers, and a well layer. The n-type and p-type semiconductor layers and the barrier layers include nitride semiconductor. The barrier layers are provided between the n-type and p-type semiconductor layers. The well layer is provided between the barrier layers, has a smaller band gap energy than the barrier layers, and includes InGaN. At least one of the barrier layers includes first, second, and third layers. The second layer is provided closer to the p-type semiconductor layer than the first layer. The third layer is provided closer to the p-type semiconductor layer than the second layer. The second layer includes AlxGa1−xN (0
Abstract translation:根据一个实施例,半导体发光器件包括n型和p型半导体层,势垒层和阱层。 n型和p型半导体层和阻挡层包括氮化物半导体。 阻挡层设置在n型和p型半导体层之间。 阱层设置在阻挡层之间,具有比阻挡层更小的带隙能量,并且包括InGaN。 阻挡层中的至少一个包括第一层,第二层和第三层。 第二层比第一层更靠近p型半导体层。 第三层比第二层更靠近p型半导体层。 第二层包括Al x Ga 1-x N(0
Abstract:
According to one embodiment, a light emitting device includes a semiconductor light emitting element, a mounting member, a first wavelength conversion layer, and a first transparent layer. The semiconductor light emitting element emits a first light. The semiconductor light emitting element is placed on the mounting member. The first wavelength conversion layer is provided between the semiconductor light emitting element and the mounting member in contact with the mounting member. The first wavelength conversion layer absorbs the first light and emits a second light having a wavelength longer than a wavelength of the first light. The first transparent layer is provided between the semiconductor light emitting element and the first wavelength conversion layer in contact with the semiconductor light emitting element and the first wavelength conversion layer. The first transparent layer is transparent to the first light and the second light.
Abstract:
A semiconductor light-emitting element including a semiconductor substrate having a first surface and second surface faced on the opposite side of the first surface, the semiconductor substrate having a recessed portion formed in the first surface, and the recessed portion having a V-shaped cross-section, a reflecting layer formed on an inner surface of the recessed portion, a first electrode formed on the reflecting layer, a light-emitting layer formed on the second surface, and a second electrode formed on the light-emitting layer.
Abstract:
An embodiment of the invention provides a light emitting device in which a semiconductor laser diode is used as a light source to emit visible light in a wide range. The light emitting device includes a semiconductor laser diode that emits a laser beam; and a luminescent component that is provided while separated from the semiconductor laser diode and absorbs the laser beam to emit the visible light. In the light emitting device, the luminescent component includes an optical path through which the laser beam is incident to a center portion of the luminescent component.
Abstract:
According to one embodiment, a semiconductor light emitting device includes a stacked structure unit, a transparent, p-side and n-side electrodes. The unit includes n-type semiconductor layer, a light emitting portion provided on a part of the n-type semiconductor layer and p-type semiconductor layer provided on the light emitting portion. The transparent electrode is provided on the p-type semiconductor layer. The p-side electrode is provided on the transparent electrode. The n-side electrode is provided on the n-type semiconductor layer. The transparent electrode has a hole provided between the n-side and p-side electrodes. A width of the hole along an axis perpendicular to an axis from the p-side electrode toward the n-side electrode is longer than widths of the n-side and p-side electrodes. A distance between the hole and the n-side electrode is not longer than a distance between the hole and the p-side electrode.
Abstract:
According to one embodiment, a semiconductor light emitting device includes: first and second semiconductor layers, a light emitting part, and an In-containing layer. The first semiconductor layer is formed on a silicon substrate via a foundation layer. The light emitting part is provided on the first semiconductor layer, and includes barrier layers and a well layer provided between the barrier layers including Ga1-z1Inz1N (0