Abstract:
(Purpose) There is provided with an illumination device for LCD device according to the invention to flow the same electric current through lamps on the same driving voltage, resluting in a long life of said illumination device. (Means of Solution) The device has a light guide plate 10, three or more light sources 11, 12 and 13 provided around at least one of side ends of the light guide plate 10, and a light reflection member 19, surrounding these light sources, to reflect light emitted from the light sources to the light guide plate 10. The light sources 11, 12 and 13 are located so as to have the same parasitic capacitance caused by intervals between the light sources and the light reflection member 19.
Abstract:
An active matrix array device, such as an AMLCD, has an array of matrix elements (10) addressed via sets of address conductors (14, 16). An address circuit (35) connected to one set (16) includes a multiplexing circuit (31) integrated on the same substrate (25) as the matrix elements and the address conductors of the one set are organised in groups with each conductor in a group being associated with a respective and different one of a plurality of signal bus lines (33) in the multiplexer circuit. Each signal bus line (33) is connected to a respective signal processing circuit (42), e.g. a DAC in the case of an AMLCD, also integrated on the substrate as respective circuit blocks. To avoid problems in use, for example caused by variations in the performance of these signal processing circuits, the arrangement of couplings with the bus lines of the address conductors in adjacent groups is mirrored about the boundary between the groups.
Abstract:
A data compression apparatus is disclosed for data compressing an information signal, which is in n-level form, n being larger than 2. The data compression apparatus comprises an input terminal (1) for receiving the n-level information signal, an entropy coder, such as an arithmetic coder (4) having an input (2) for receiving an input signal, which is adapted to carry out a lossless encoding step on the input signal, so as to obtain a data compressed output signal at an output (6). The apparatus further comprises a prediction filter (12) for carrying out a prediction step on the n-level information signal so as to obtain a prediction signal and a probability signal determining unit (18) for generating the probability signal in response to said prediction signal. An output terminal (8) is available for supplying said data compressed output signal. (FIG. 1) Further, a data expansion apparatus is disclosed. (FIG. 2)
Abstract:
In a device (8) which includes an electroacoustic transducer (7) for the acoustic reproduction of sound signals to an ear (14) of a user (2) who assumes a user position at the device (8), the transducer (7) is optimized for the acoustic reproduction of speech-signal sound waves and is equipped with additional means (25) for realizing a distinct directivity for the speech-signal sound waves emitted by said transducer (7) and, as a result of its directivity, the transducer (7) directs the speech-signal sound waves which it emits preferentially to the ear (14) of a user (2) who is in the user posture.
Abstract:
A method of crystallizing a semiconductor film (3) deposited on a supporting substrate (1,2) is disclosed together with apparatus for the same. The method comprising the steps of (a) with a laser (5), exposing each of a series of discrete regions (a to n) of the semiconductor film to one or more laser beam (4) pulses (an nullexposurenull); (b) monitoring the energy output of the laser (5); and (c) if the energy output of the laser (5) during an exposure of a discrete region (a to n) exceeds a predetermined threshold, re-exposing that discrete region to one or more laser beam (4) pulses. Also disclosed is a TFT (12) manufactured by said method and active matrix device (20) comprising a row (24) and column (23) array of active elements (22), each having such a switching TFT (12).
Abstract:
A method for manufacturing an electronic device comprising an organic-containing material (3) comprises the steps of: covering the organic-containing material (3) with a SiO2 layer (4), applying a SiN layer (5) to the SiO2 layer (4), applying and patterning a resist layer (6), etching through the SiN layer (5) by means of an etch process wherein SiN is etched faster than SiO2, removing the resist (6), etching through the SiO2 layer (4) by means of an etch process wherein SiO2 is etched faster than SiN, removing the SiN layer (5), etching the organic dielectric material (3) using the SiO2 layer (4) as a mask.
Abstract:
A radio communication system has a random access channel for the transmission of data (214) from a secondary station to a primary station. Such a channel is intended for use by secondary stations having data (214) to transmit to a primary station while not actually engaged in a call. By enabling access requests (202) to be transmitted with a greater range of possible signatures, a much greater number of degrees of freedom is available to a secondary station requesting access to a random access channel. This enables significantly improved efficiency of resource allocation by increasing the amount of information transmitted to the primary station by the access request (202).
Abstract:
A method of producing a top gate thin-film transistor in which an insulated gate structure (14) is formed over an amorphous silicon layer with upper gate conductor (16) directly over the gate insulator layers. The gate conductor is patterned to be narrower than a spacing to be provided between source and drain electrode contacts. Laser annealing of areas of the amorphous silicon layer (12) not shielded by the gate conductor (16) is carried out to form polysilicon portions. The gate insulator layers are formed as a gate insulator layer (14a,14b) of first refractive index, and an overlying surface insulator layer (14c) of second, lower, refractive index. The overlying surface insulator layer has been found to reduce fluctuations in the reflectance of the structure in dependence upon the specific thicknesses of the gate insulator layers. Therefore, the tolerances for the thicknesses of the gate insulator layers can be reduced whilst maintaining control of the laser annealing process.
Abstract:
An image sensor (39) comprises a plurality of pixels (10), each pixel comprising a light sensor element (12), wherein a sensor voltage across the element varying depending on the light incident on the element. First and second transistors (14,16) are connected in series between voltage supply lines (18,20). A gate voltage (Vg1) on the first transistor is dependent upon the sensor voltage so that the current flowing through the first transistor (14) is a function of the sensor voltage. The gate voltage (Vg2) of the second transistor is supplied by a feedback circuit (22,24,26) which provides that the current through the first and second transistors (14,16) is substantially equal. The output of the pixel (10) is the gate voltage (Vg2) of the second transistor (16). The image sensor design of the invention avoids the need for storage capacitors to provide pixel gain.
Abstract:
In a garment 10, 12 incorporating an electronic device such as a radio 16, a variable of the device, such as volume, is varied by the use of two cords 22, 24, the electrical resistance of each cord decreasing in accordance with an increase in tension applied to the cord; pulling one cord increases the volume of the radio and pulling the other cord decreases the volume. The stronger the pull, the faster the change in volume. The ends of the cords lie outside the garment and carry toggles 26, 28 for easy operation by a gloved hand. Alternatively the ends of the cord outside the garment may be connected to opposite ends of a manual grip 48.