摘要:
Front side laser scribing and plasma etch are performed followed by back side grind to singulate integrated circuit chips (ICs). A mask is formed covering ICs formed on the wafer, as well as any bumps providing an interface to the ICs. The mask is patterned by laser scribing to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer, below thin film layers from which the ICs are formed. The semiconductor wafer is then etched through the gaps in the patterned mask to advance a front of an etched trench partially through the semiconductor wafer thickness. The front side mask is removed, a backside grind tape applied to the front side, and a back side grind performed to reach the etched trench, thereby singulating the ICs.
摘要:
Methods of dicing semiconductor wafers, and transporting singulated die, are described. In an example, a method of dicing a wafer having a plurality of integrated circuits thereon involves dicing the wafer into a plurality of singulated dies disposed above a dicing tape. The method also involves forming a water soluble material layer over and between the plurality of singulated dies, above the dicing tape.
摘要:
A method and apparatus for etching photomasks is provided herein. In one embodiment, the apparatus comprises a process chamber having a support pedestal adapted for receiving a photomask. An ion-neutral shield is disposed above the pedestal and a deflector plate assembly is provided above the ion-neutral shield. The deflector plate assembly defines a gas flow direction for process gases towards the ion-neutral shield, while the ion-neutral shield is used to establish a desired distribution of ion and neutral species in a plasma for etching the photomask.
摘要:
A phased-locked loop (PLL) circuit which comprises a phase-frequency detector (PFD) configured to receive a reference signal, a voltage-controlled oscillator (VCO) configured to produce a VCO signal, and a divider configured to divide the VCO signal thereby producing a feedback signal based on the feedback signal not being locked to the reference signal. Based on the feedback signal not being locked to the reference signal, the PFD is configured to compare an edge of the reference signal with an edge of the feedback signal to produce an error signal. Based on the feedback signal being locked to the reference signal, the PFD is configured to compare the edge of the reference signal to an edge of the VCO signal to produce an error signal and the divider is configured to be disabled.
摘要:
A system on a chip (SOC) includes a physical interface having first and second sets of interface pads. Interface pads from the first set are interleaved with interface pads from the second set. Additionally, the SOC is arranged for operation with a superset die having first and second personalities and has a physical interface with interface pads. The SOC uses a first number of interface pads in the first personality and a second number of interface pads in the second personality, where the first number is greater than the second number. A switch switches signals between the superset die and the physical interface and, in the second personality, switches signals to the physical interface so that interface pads in the second number of interface pads are interleaved with interface pads not in use in the second personality.
摘要:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The patterned mask is then separated from the singulated integrated circuits.
摘要:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a pulse train laser scribing process using multiple-pulse bursts to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
摘要:
The present invention provides methods and an apparatus controlling and minimizing process defects in a development process, and modifying line width roughness (LWR) of a photoresist layer after the development process, and maintaining good profile control during subsequent etching processes. In one embodiment, a method for forming features on a substrate includes developing and removing exposed areas in the photosensitive layer disposed on the substrate in the electron processing chamber by predominantly using electrons, removing contaminants from the substrate by predominantly using electrons, and etching the non-photosensitive polymer layer exposed by the developed photosensitive layer in the electron processing chamber by predominantly using electrons.
摘要:
Methods for fabricating a photomask are disclosed herein. In one embodiment, a method for fabricating a photomask includes providing a filmstack having a molybdenum layer and a light-shielding layer in a processing chamber, patterning a first resist layer on the light-shielding layer, etching the light-shielding layer using the first resist layer as an etch mask, and etching the molybdenum layer using the patterned light-shielding layer and the patterned first resist layer as a composite mask.
摘要:
Embodiments of the present invention provide methods and apparatus for removing debris particles using a stream of charged species. One embodiment of the present invention provides an apparatus for removing debris particles from a beam of radiation comprising a charged species source configured to dispense electrically charged species, and a collecting plate biased electrically opposite to the charged species from the charged species source, wherein the collecting plate and the charged species source are disposed on opposite sides of the beam of radiation, a stream of charged species from the charged species source to the collecting plate intersects the beam of radiation, the stream of charged species is configured to attach and remove debris particles from the beam of radiation by electrostatic force, and the collecting plate is configured to receive the charged species and the debris particles removed from the beam of radiation.