Abstract:
Apparatus having corresponding methods comprises a reference clock; a receiver to receive a wireless television signal, wherein the wireless television signal is transmitted by a television transmitter according to a transmitter clock; and a clock offset unit to determine a clock offset between the reference clock and the transmitter clock based on the wireless television signal.
Abstract:
A spherical plain bearing has an outer ring having a concave first bearing surface and an inner ring having a convex second bearing surface slidably disposed to the first bearing surface. The inner ring member also has a third bearing surface for engaging a pin to be mounted in the bearing. At least one bearing surface has a lubrication groove, and one of the outer ring and the inner ring is made from 440 stainless steel while the other is made from a precipitation-hardened martensitic stainless steel. Alternatively, the outer ring and the inner ring may be made from steel and a copper-beryllium alloy. In yet another alternative, the bearing need not have a lubrication groove, but may have a lubrication liner on the third bearing surface. A dropped hinge mechanism for a flap on a fixed wing aircraft has a hinge that includes such a bearing.
Abstract:
A programmable logic device (PLD) includes a non-volatile memory, a configuration memory, and a control circuitry. The control circuitry couples to the non-volatile memory and to the configuration memory. A set of voltages are derived from the outputs of the control circuitry, and are applied to circuitry within the PLD.
Abstract:
A programmable logic device and associated method is provided with repairable regions. In one aspect, general routing interconnect lines are segmented within repairable regions. In another aspect, IO bus lines and associated circuitry are provided that accommodate redundancy in a staggered segmented architecture. In another aspect, a dedicated routing architecture between particular logic regions accommodates shifting to define and utilize repairable regions. Principles of other aspects are illustrated and described in the context of several exemplary embodiments of aspects of the invention.
Abstract:
An embodiment of this invention pertains to a versatile and flexible logic element and logic array block (“LAB”). Each logic element includes a programmable combinational logic function block such as a lookup table (“LUT”) and a flip-flop. Within the logic element, multiplexers are provided to allow the flip-flop and the LUT to be programmably connected such that either the output of the LUT may be connected to the input of the flip-flop or the output of the flip-flop may be connected to the input of the LUT. An additional multiplexer allows the output of the flip-flop in one logic element to be connected to the input of a flip-flop in a different logic element within the same LAB. Output multiplexers selects between the output of the LUT and the output of the flip-flop to generate signals that drive routing lines within the LAB and to routing lines external to the LAB. These output multiplexers are constructed such that the combinational output (output from the LUT) is faster than the output from the flip-flop. A collection of routing lines and multiplexers within the LAB are used to provide inputs to the LUTs. Each of the input multiplexers for each logic element is connected to a subset of the routing lines within the LAB using a specific pattern of connectivity of multiplexers to associated wires that maximizes the efficiency of use of the routing wires. Control signals for the set of logic elements within the LAB are generated using a secondary signal generation unit that minimizes contention for shared signals. One of the control signals is an “add-or-subtract control signal” that allows all of the LEs in a LAB to perform either addition or subtraction under the control of a logic signal. In a PLD supporting redundancy, the carry chain for the LABs is arranged in the same direction that redundancy shifts to remap defective LABs and a multiplexer on the carry input of a LAB is used to select the appropriate carry output from another LAB depending on whether redundancy is engaged.
Abstract:
At least some of the interconnection signaling on a programmable logic device (“PLD”) is by differential signaling using differential driver circuitry to apply differential signals to a pair of conductors that extend to differential receiver circuitry. Such differential interconnection signaling helps the PLD operate satisfactorily with lower power supply voltages. The conductors in each differential signaling pair may cross over one another at various intervals in order to help reduce the adverse effects of capacitive coupling between adjacent and parallel signaling paths.
Abstract:
The present invention provides a locking apparatus for switching between a lock state and an unlock state of a sliding device in a system. The system has a plug and a socket. The sliding device has a shaft. The locking apparatus has a sliding member, a spring, a hook, and a connecting member. The hook has an end part and a bending portion for locking the shaft. When the plug is plugged into the socket, the locking apparatus unlocks the shaft. When the plug is pulled out from the socket, the locking apparatus locks the shaft.
Abstract:
A device to protect fans from overheating and overloading with driving current. The fan protection device of the present invention monitors the temperature and current change of the operating fan. When the temperature or the current float surpasses a predetermined value, the protection device cuts off the fan's power supply and avoids damage to the unit.
Abstract:
A static random access memory ("SRAM") that is especially suitable for such uses as inclusion on a programmable logic device to provide programmable control of the configuration of that device. The SRAM includes a plurality of SRAM cells, all of which are simultaneously cleared to a first of two logic states by application of a second of the two logic states to clear terminals of the cells. Any cell that needs to be programmed to the second of the two logic states is thereafter specifically addressed and a data signal thereby applied which programs the cell to the second logic state. The cells are preferably constructed so that they are programmed to the second logic state by application of a data signal having the first logic state. Even a very small unipolar MOS pass gate transistor can therefore be used as the addressable path through which the data signal is applied. The memory may also include circuitry for verifying the contents of each cell via the data input terminal of the cell.
Abstract:
Embodiments of N-well or P-well strap structures are disclosed with lower space requirements achieved by forming the strap on both sides of one or more floating polysilicon gate fingers.