Abstract:
An electronic device is provided. The electronic device includes a display that is configured to show content that includes a plurality of frames. The plurality of frames includes a first frame that is associated with a pre-transition value. The plurality of frames also includes a second frame that is associated with a current frame value that corresponds to a first luminance. Additionally, the electronic device is configured to determine an overdriven current frame value corresponding to a second luminance that is greater than the first luminance. The electronic device is also configured to display the second frame using the overdriven current frame value.
Abstract:
Power management techniques include a graphics processing unit (GPU) in which the GPU determines whether it is operating outside an operational limit and, when the GPU is operating outside the operational limit, the GPU alters performance of an operation to be performed texture processor within the GPU to reduce complexity of the operation. Otherwise, the GPU may perform the texture processing operation at its default complexity. These techniques provide a degree of power control not available in other techniques.
Abstract:
One disclosed embodiment is directed to graphics processing method for displaying a user interface. The method includes executing a plurality of graphic processing operation in a single rendering pass. The rendering pass includes several render targets. At least one of the render targets is designated as a memory-less render target. The memory-less render target is used to store intermediate data. The intermediate data is combined with the outcome of at least one other graphics processing operation to generate a combined result. The combined result is stored in the frame buffer memory for display.
Abstract:
Power management techniques are disclosed for a graphics processing unit (GPU) in which the GPU determines whether it is operating outside an operational limit and, when the GPU is operating outside the operational limit, the GPU alters performance of an operation to be performed texture processor within the GPU to reduce complexity of the operation. Otherwise, the GPU may perform the texture processing operation at its default complexity. These techniques provide a degree of power control not available in other techniques.
Abstract:
An innovative GPU framework and related APIs present more accurate representations of the target hardware so that the distinctions between the fixed-function and programmable features of the GPU are perceived by a developer. This permits a program and/or a graphics object generated or manipulated by the program to be understood as not just code, but machine states that are associated with the code. When such an object is defined, the definitional components requiring programmable GPU features can be compiled only once and reused repeatedly as needed. Similarly, when a state change is made, the state changes correspond to the state changes made on the hardware. Additionally, the creation of these immutable objects prevents a developer from inadvertently changing portions of the program or object that cause it to behave differently than intended.
Abstract:
A display driving architecture that can include two graphics pipelines with an optional connection between them to provide a mirrored mode. In one embodiment, one of the two pipelines can be automatically configured (e.g. routed in one of a plurality of ways, such as routing to do color conversion) based upon the type of cable that is coupled to a connector of the one pipeline. In another embodiment, a connection of a cable can cause display information (e.g. resolutions of an external display) to be provided to an application which can select a display mode while one of the graphics pipelines is kept in a low power state.
Abstract:
An electronic device may include a display. Control circuitry may operate the display at different frame rates such as 60 Hz, 80 Hz, and 120 Hz. The control circuitry may determine which frame rate to use based on a speed of animation on the display and based on a type of animation on the display. To mitigate the appearance of judder as the display frame rate changes, the control circuitry may implement techniques such as hysteresis (e.g., windows of tolerance around speed thresholds to ensure that the display frame rate does not change too frequently as a result of noise), speed thresholds that are based on a user perception study, consistent latency between touch input detection and corresponding display output across different frame rates (e.g., using a fixed touch scan rate that is independent of frame duration), and animation-specific speed thresholds for triggering frame rate changes.
Abstract:
Techniques are disclosed relating to memory allocation for graphics surfaces. In some embodiments, graphics processing circuitry is configured to access a graphics surface based on an address in a surface space assigned to the graphics surface. In some embodiments, first translation circuitry is configured to translate address information for the surface space to address information in the virtual space based on one or more of the translation entries. In some embodiments, the graphics processing circuitry is configured to provide an address for the access to the graphics surface based on translation by the first translation circuitry and second translation circuitry configured to translate the address in the virtual space to an address in a physical space of a memory configured to store the graphics surface. The disclosed techniques may allow sparse allocation of large graphics surfaces, in various embodiments.
Abstract:
In general, embodiments are disclosed for tracking and allocating graphics processor hardware resources. More particularly, a graphics hardware resource allocation system is able to generate a priority list for a plurality of data masters for graphics processor based on a comparison between a current utilizations for the data masters and a target utilizations for the data masters. The graphics hardware resource allocation system designate, based on the priority list, a first data master with a higher priority to submit work to the graphics processor compared to a second data master. The graphics hardware resource allocation system determines a stall counter value for the data master and generates a notification to pause work for the second data master based on the stall counter value.
Abstract:
The disclosure pertains to techniques for operation of graphics systems and task execution on a graphics processor. One such technique comprises a computer-implemented method for task execution on a graphics processor, the method comprising creating a data structure for grouping data resources, populating the data structure with two or more data resources for encoding into a graphics processing language by an encoding object, passing the data structure to a first programming interface command, the first programming interface command configured to access the data structure's data resources, triggering execution of a first function on a graphics processer in response to passing the data structure to the first programming interface command, passing the data structure to a second programming interface command, the second programming interface command configured to access the data structure's data resources, and triggering execution of a second function on the graphics processer in response to passing the data structure to the second programming interface command.