Abstract:
Embodiments of the present disclosure provide an array substrate and a manufacturing method therefor, and a display panel. The array substrate includes: a substrate and a pixel defining layer provided on the substrate, the pixel defining layer including a plurality of opening areas, and the plurality of opening areas being provided with a plurality of quantum dot light-emitting devices in a one-to-one correspondence manner; each of the quantum dot light-emitting devices includes a quantum dot light-emitting layer, and the quantum dot light-emitting layer is made of a quantum dot material. At least one of the pixel defining layer and the quantum dot material is magnetic.
Abstract:
The present disclosure provides a method and a system for testing an OLED display device. The method includes steps of: applying a testing signal to the to-be-tested OLED display device; acquiring a measured distribution image for a testing region of the OLED display device to which the testing signal is applied; comparing the measured distribution image with a corresponding calibrated distribution image so as to obtain a comparison result; determining whether or not there is a back plate abnormal point at the testing region in accordance with the comparison result; and when the comparison result indicates that there is a back plate abnormal point at the testing region, determining a position of the back plate abnormal point on the OLED display device.
Abstract:
The present invention provides array substrate and manufacturing method thereof and display device. The manufacturing method comprises: forming patterns including active regions of first and second TFTs by patterning process on substrate; forming gate insulation layer on the substrate; forming patterns including gates of the TFTs by patterning process on the substrate; forming isolation layer on the substrate; forming, on the substrate, second contacting vias for connecting sources and drains of the TFTs to respective active regions and first contacting via for connecting gate of the second TFT to source of the first TFT; and on the substrate, forming patterns of corresponding sources and drains on the second contacting vias above active regions of the TFTs, and meanwhile forming connection line for connecting gate of the second TFT to source of the first TFT above the first contacting via above gate of the second TFT.
Abstract:
The disclosure provides a micro-electromechanical system switch and a communication device. The micro-electromechanical system switch includes: a substrate; a DC bias line, arranged on one side of the substrate; a first signal transmission line and a second signal transmission line, arranged on the same side of the substrate as the DC bias line; a cantilever beam, arranged on a side, away from the substrate, of a layer on which the first signal transmission line is located; and a fixing structure, arranged on the side, away from the substrate, of the layer on which the first signal transmission line is located and not in contact with the first signal transmission line, where the fixing structure connects the free end and the substrate.
Abstract:
The present disclosure provides a thin film sensor and a manufacturing method thereof, and belongs to the technical field of sensors. The thin film sensor of the present disclosure has a plurality of conductive-wire regions intersecting each other, and a plurality of hollow-out parts defined by the plurality of conductive-wire regions; the thin film sensor includes: a base substrate; a plurality of conductive wires on the base substrate, with the conductive wires being in the conductive-wire regions one to one; and a functional structure on the base substrate, where the functional structure is configured to allow at least part of light, which is transmitted along a preset direction and enters the functional structure from the conductive wire-regions, to exit from the hollow-out parts, and the preset direction is a direction from the base substrate towards the conductive wires.
Abstract:
An antenna unit, a manufacturing method thereof, a display device, and an electronic apparatus. The antenna unit includes a radiation main body, at least one feed line, and a plurality of grounding portions. The at least one feed line and the radiation main body are electrically connected, the radiation main body, the at least one feed line, and the plurality of grounding portions are provided in a same layer.
Abstract:
A detection substrate and a ray detector are disclosed. The detection substrate includes a base substrate; a plurality of detection pixel circuits, located on the base substrate; a first passivation layer, located on the side, facing away from the base substrate, of the detection pixel circuits; a planarization layer, located on the side, facing away from the base substrate, of the first passivation layer, where the surface of the side, facing away from the first passivation layer, of the planarization layer is a plane; and a plurality of photosensitive devices; where the photosensitive devices are electrically connected to the detection pixel circuits in a one-to-one correspondence through vias penetrating through the first passivation layer and the planarization layer, and each photosensitive device includes a first portion and a second portion.
Abstract:
A thin film transistor, a method for manufacturing the same, an array substrate, and a display device are provided. The thin film transistor includes a substrate; a gate electrode, a gate insulating layer, an active layer, a source electrode, and a drain electrode provided on the substrate; wherein the active layer includes a source region, a drain region, and a channel region between the source region and the drain region, the channel region having a bending pattern.
Abstract:
Embodiments of the present disclosure relate to a quantum dot light emitting diode subpixel array, a method for manufacturing the same, and a display device. The method for manufacturing the quantum dot light emitting diode subpixel array according to embodiments of the present disclosure comprises a quantum dot accepting layer forming step of forming a quantum dot accepting layer on a substrate; a thermosensitive quantum dot material layer applying step of applying a thermosensitive quantum dot material layer containing a thermosensitive organic ligand on the quantum dot accepting layer; and a thermosensitive quantum dot material transferring step of subjecting the organic ligand of the thermosensitive quantum dot material in a predetermined area of the thermosensitive quantum dot material layer to a chemical reaction by heating such that the thermosensitive quantum dot material in the predetermined area is transferred onto a corresponding subpixel region on the quantum dot accepting layer.
Abstract:
A three-dimensional display device having an imaging space, wherein an up-conversion material is disposed inside the imaging space, a first light source that emits light toward the imaging space in a first direction, and a second light source that emits light toward the imaging space in a second direction. When the three-dimensional display device is operating, the light from the first light source and the light from the second light source intersect in the imaging space to form a convergence line or light convergence plane, such that the up-conversion material on the convergence line or in the convergence plane is excited to emit light.