COPPER-BASED ENERGY STORAGE DEVICE AND METHOD
    23.
    发明申请
    COPPER-BASED ENERGY STORAGE DEVICE AND METHOD 审中-公开
    基于铜的能源储存装置及方法

    公开(公告)号:US20080145746A1

    公开(公告)日:2008-06-19

    申请号:US11763787

    申请日:2007-06-15

    IPC分类号: H01M2/18 H01M2/38

    摘要: An energy storage device is provided that includes a cathodic material in electrical communication with a separator. The cathodic material includes copper. The separator has a first surface that defines at least a portion of a first chamber, and a second surface that defines a second chamber. The first chamber is in ionic communication with the second chamber through the separator. The separator has at least one of the following attributes: the separator is a composite of alumina and a rare earth oxide, or the separator is a composite of alumina and a transition metal oxide, or the separator comprises a plurality of grains, and the grains define grain boundaries that define interstitial spaces, and the interstitial spaces defined by the grain boundaries are free of sodium aluminate prior to an initial electrical charging of the energy storage device or are free of the cathodic material after the initial electrical charging of the energy storage device, or the separator comprises a continuous phase of an alkali-metal-ion conductor and a continuous phase of a ceramic oxygen-ion conductor. Various systems and methods are provided, also.

    摘要翻译: 提供一种能量存储装置,其包括与分离器电连通的阴极材料。 阴极材料包括铜。 分离器具有限定第一室的至少一部分的第一表面和限定第二室的第二表面。 第一室通过分离器与第二室离子连通。 隔板具有以下属性中的至少一个:隔板是氧化铝和稀土氧化物的复合物,或者隔板是氧化铝和过渡金属氧化物的复合物,或者隔板包含多个颗粒,并且颗粒 限定定义间隙的晶界,并且在能量存储装置的初始充电之前由晶界定义的间隙空间不含铝酸钠,或者在能量存储装置的初始充电之后不含阴极材料 或者分离器包括碱金属 - 离子导体和陶瓷氧离子导体的连续相的连续相。 也提供了各种系统和方法。

    Electrochemical cell
    25.
    发明授权
    Electrochemical cell 有权
    电化学电池

    公开(公告)号:US08766642B2

    公开(公告)日:2014-07-01

    申请号:US12549839

    申请日:2009-08-28

    IPC分类号: G01N27/416 H01M10/00

    摘要: An electrochemical cell is provided. The electrochemical cell comprises a cathode compartment, wherein a metal in a solid form is disposed in the cathode compartment. The electrochemical cell further comprises a separator, an anode compartment, and at least one contact device disposed in the cathode compartment or in the anode compartment. The contact device is suspended from the top of the electrochemical cell in the cathode compartment or in the anode compartment. The electrochemical cell is in a ground state. An electrochemical cell during its working is also provided. Methods for using and manufacturing the electrochemical cell are also provided. The electrochemical cell is used to determine a state-of-charge of a source.

    摘要翻译: 提供电化学电池。 电化学电池包括阴极室,其中固体形式的金属设置在阴极室中。 电化学电池还包括隔板,阳极室和设置在阴极室或阳极室中的至少一个接触装置。 接触装置从阴极室或阳极室中的电化学电池的顶部悬挂。 电化学电池处于基态。 还提供了在其工作期间的电化学电池。 还提供了使用和制造电化学电池的方法。 电化学电池用于确定源的充电状态。

    Replaceable plate expanded thermal plasma apparatus and method
    30.
    发明授权
    Replaceable plate expanded thermal plasma apparatus and method 失效
    可更换板膨胀热等离子体装置及方法

    公开(公告)号:US07282244B2

    公开(公告)日:2007-10-16

    申请号:US10655350

    申请日:2003-09-05

    IPC分类号: H05H1/24

    摘要: The present invention provides a deposition process for plasma enhanced chemical vapor deposition of a coating on a substrate. The process comprises detennining a target process condition within a chamber of an expanding thermal plasma generator; the generator comprising a cathode, a replaceable cascade plate and an anode comprising a concentric orifice; and thereafter replacing the cascade plate with another plate having a configured orifice to effect the identified target process condition. The plasma is then generated at the target process condition by providing a plasma gas to the plasma generator and ionizing the plasma gas in an arc between cathode and anode within the generator and expanding the gas as a plasma onto a substrate in a deposition chamber.

    摘要翻译: 本发明提供了一种用于等离子体增强化学气相沉积在衬底上的涂层的沉积工艺。 该方法包括确定膨胀热等离子体发生器的腔室内的目标工艺条件; 所述发生器包括阴极,可替换级联板和包括同心孔的阳极; 然后用具有配置的孔的另一个板代替级联板以实现所识别的目标工艺条件。 然后通过向等离子体发生器提供等离子体气体并使等离子体气体在发生器内的阴极和阳极之间的电弧中离子化并且将等离子体气体作为等离子体扩散到沉积室中的衬底上,从而在目标工艺条件下生成等离子体。