Abstract:
This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
Abstract:
This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
Abstract:
Polymerization processes and reactor systems for producing multimodal ethylene polymers are disclosed in which at least one loop reactor and at least one fluidized bed reactor are utilized. Configurations include a loop reactor in series with a fluidized bed reactor and two loop reactors in series with a fluidized bed reactor.
Abstract:
Methods of controlling olefin polymerization reactor systems are provided herein. In some aspects, the methods include a) selecting n input variables, each input variable corresponding to a process condition for an olefin polymerization process; b) identifying m response variables, each response variable corresponding to a measurable polymer property; c) adjusting one of more of the n input variables in a plurality of polymerization reactions using the olefin polymerization reactor system, to provide a plurality of olefin polymers and measuring each of the m response variables as a function of the input variables for each olefin polymer; d) analyzing the change in each of the response variables as a function of the input variables to determine the coefficients; e) calculating a Response Surface Model (RSM) using general equations for each response variable determined in step d) to correlate any combination of the n input variables with one or more of m response variables; f) applying n selected input variables to the calculated Response Surface Model (RSM) to predict one or more of m target response variables, each target response variable corresponding to a measurable polymer property; and g) using the n selected input variables Is1 to Isn to operate the olefin polymerization reactor system and provide a polyolefin product.
Abstract:
The present invention discloses high pressure flow reactor vessels and associated systems. Also disclosed are processes for producing thiol compounds and sulfide compounds utilizing these flow reactor vessels.
Abstract:
The present invention discloses high pressure flow reactor vessels and associated systems. Also disclosed are processes for producing thiol compounds and sulfide compounds utilizing these flow reactor vessels.
Abstract:
This disclosure provides for alpha olefin oligomers and polyalphaolefins (or PAOs) and methods of making the alpha olefin oligomers and PAOs. This disclosure encompasses metallocene-based alpha olefin oligomerization catalyst systems, including those that include at least one metallocene and an activator comprising a solid oxide chemically-treated with an electron withdrawing anion. The alpha olefin oligomers and PAOs prepared with these catalyst systems can have a high viscosity index combined with a low pour point, making them particularly useful in lubricant compositions and as viscosity modifiers.
Abstract:
The present invention discloses processes for forming polythiol compositions from olefinic hydrocarbons such as cyclooctadiene, cyclododecatriene, and trivinylcyclohexane. The polythiol compositions produced from these processes, including the sulfur-containing compounds of these compositions, also are described.
Abstract:
The present invention discloses processes for forming polythiol compositions from olefinic hydrocarbons such as cyclooctadiene, cyclododecatriene, and trivinylcyclohexane. The polythiol compositions produced from these processes, including the sulfur-containing compounds of these compositions, also are described.
Abstract:
The present invention discloses processes for forming polythiol compositions from olefinic hydrocarbons such as cyclooctadiene, cyclododecatriene, and trivinylcyclohexane. The polythiol compositions produced from these processes, including the sulfur-containing compounds of these compositions, also are described.