Abstract:
Systems and methods for exhaust gas recirculation are provided. The system includes a dedicated exhaust gas recirculation loop for recirculating exhaust gas flow from at least one dedicated cylinder of an engine into an intake system prior to combustion. The system further includes a low pressure exhaust gas recirculation loop for increasing the exhaust gas recirculation amount above that provided by the dedicated exhaust gas recirculation loop.
Abstract:
A method includes operating a spark ignition engine and flowing low pressure exhaust gas recirculation (EGR) from an exhaust to an inlet of the spark ignition engine. The method includes interpreting a parameter affecting an operation of the spark ignition engine, and determining a knock index value in response to the parameter. The method further includes reducing a likelihood of engine knock in response to the knock index value exceeding a knock threshold value.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
The present disclosure provides a method for predicting a fluid type, comprising sensing, by a first sensor, mass flow data of a fluid in an engine, wherein the first sensor operates based on a first fluid property; sensing, by a second sensor, mass flow data of the fluid, wherein the second sensor operates based on a second fluid property; and detecting, by a logic circuit of a controller, a percent difference in the mass flow data provided by the first and second sensors, the percent difference indicating that the fluid is comprised of at least a first fluid type.
Abstract:
Systems and methods for internal combustion engine operation with exhaust gas recirculation and turbocharging are disclosed. The systems include an exhaust gas recirculation loop for recirculating exhaust gas flow from a first portion of the cylinders of the engine into an intake system prior to combustion. The system further includes a turbine with first and second inlets for receiving exhaust gas flows from respective first and second parts of the exhaust gas of the remaining portion of the cylinders.
Abstract:
Systems, apparatus, and methods are disclosed that include a divided exhaust engine with at least one primary EGR cylinder and a plurality of non-primary EGR cylinders. The systems, apparatus and methods control the amount of recirculated exhaust gas in a charge flow in response to EGR fraction deviation conditions.
Abstract:
A system includes an internal combustion engine having a number of cylinders, with at least one of the cylinder(s) being a primary EGR cylinder that is dedicated to provided EGR flow during at least some operating conditions. A controller is structured to control combustion conditions in the cylinders in response to one or more operating conditions associated with the engine.
Abstract:
A system includes an internal combustion ignition engine with an exhaust gas flow, a particulate filter in the exhaust gas flow, a NOx reduction catalyst in the exhaust gas flow downstream of the particulate filter, a first oxygen sensor coupled to the exhaust gas flow downstream of the NOx reduction catalyst, and a second oxygen sensor coupled to the exhaust gas flow between the particulate filter and the NOx reduction catalyst. A controller includes an exhaust conditions module that interprets a first oxygen signal from the first oxygen sensor and a second oxygen signal from the second oxygen sensor and a combustion control module that commands a high engine-out air-fuel ratio when the first oxygen signal indicates a low oxygen content and commands a low engine-out air-fuel ratio when the first oxygen signal indicates a high oxygen content.
Abstract:
Systems, methods and techniques for exhaust gas recirculation are provided. The system includes controlling the mixing of exhaust flow from at least one cylinder of an engine with air in an air intake system prior to combustion in response to an EGR fraction deviation condition. The exhaust flow from the at least one cylinder is accumulated prior to mixing and distributed into the intake air system in a controlled manner to mitigate or prevent the EGR flow from deviating from an expected EGR fraction.
Abstract:
Systems and methods for internal combustion engine operation with exhaust gas recirculation and turbocharging are disclosed. The systems include an exhaust gas recirculation loop for recirculating exhaust gas flow from a first portion of the cylinders of the engine into an intake system prior to combustion. The system further includes a turbine with first and second inlets for receiving exhaust gas flows from respective first and second parts of the exhaust gas of the remaining portion of the cylinders.