Abstract:
A method for developing a photo-exposed photoresist layer to improve a critical dimension uniformity (CDU) for a semiconductor device manufacturing process including providing a semiconductor process wafer having a process surface comprising a photoresist layer photo-exposed according to an exposure pattern; dispensing a predetermined amount of developer solution over a stationary semiconductor process wafer to form a film of developer solution covering the process surface; partially developing the exposed portions of the photoresist layer comprising maintaining the semiconductor process wafer in a stationary position for a predetermined time period; rotating the semiconductor process wafer for a predetermined period of time to remove a portion of the developer solution; and, repeating the steps of dispensing, partially developing, and rotating, for a predetermined number of repetition cycles to complete a photoresist development process.
Abstract:
Removing photoresist from alignment marks on a semiconductor wafer using a wafer edge exposure process is disclosed. The alignment marks on the wafer are covered by photoresist used in conjunction with semiconductor processing of one or more layers deposited on the semiconductor wafer. One or more parts of the edge of the wafer are exposed to remove the photoresist from these parts and thus reveal alignment marks on the wafer. The exposure of the one or more parts of the wafer is accomplished without performing a photolithographic clear out process. Rather, a wafer edge exposure (WEE) process is inventively utilized. Once the WEE process is performed, subsequent layers may be deposited by aligning them using the revealed alignment marks.
Abstract:
A new method is provided to create a gradated dopant concentration in the contact plug of DRAM devices whereby a high dopant concentration is present at the bottom of the plug and a low dopant concentration is present at the top of the plug. Two layers of dielectric are deposited; the upper layer serves as a layer to adjust the dopant concentration in the lower layer. This adjustment is done by Rapid Thermal anneal of both layers of dielectric. After the dopant concentration has been adjusted, the upper layer of dielectric is removed and the upper section of the contact node is formed using lightly doped poly. The high dopant concentration at the bottom of the contact plug results in low contact resistance between the plug and the underlying silicon substrate. A low dopant concentration at the top surface of the contact plug results in low oxidation of the surface of the plug.
Abstract:
A process for reducing the aspect ratio, for narrow diameter contact holes, formed in thick insulator layers, used to integrate logic and DRAM memory devices, on the same semiconductor chip, has been developed. The process of reducing the aspect ratio, of these contact holes, features initially forming, via patterning procedures, lower, narrow diameter contact holes, to active device regions, in the logic area, while also forming self-aligned contact openings to source/drain regions in the DRAM memory region. After forming tungsten structures, in the lower, narrow diameter contact holes, polycide bitline, and polysilicon capacitor structures, are formed in the DRAM memory region, via deposition, and patterning, of upper level insulator layers, and polysilicon and polycide conductive layers. Upper, narrow diameter openings, are then formed in the upper level insulator layers, exposing the top surface of tungsten structures, located in the lower, narrow diameter contact holes. The formation of upper tungsten structures, in the upper, narrow diameter contact openings completes the process of forming metal structures, in narrow diameter openings, with reduced aspect ratios, achieved via a two stage contact hole opening, and a two stage metal filling procedure.
Abstract:
A process for forming a DRAM, cylindrical shaped, stacked capacitor structure, located under a bit line structure, has been developed. The process features defining a polysilicon cell plate structure, during the same photolithotgraphic and anisotropic etching procedures, used to open a bit line contact hole. The bit line contact hole is formed by first opening a top portion of the bit line contact hole, using a photoresist shape as an etch mask, and after the formation of silicon nitride spacers, on the sides of the top portion of the bit line contact hole, the bottom portion of the bit line contact hole is opened, using silicon nitride as an etch mask.
Abstract:
A method for forming a self aligned contact wherein a dielectric layer is formed directly on a conductive structure according the present invention. A semiconductor structure having a polysilicon conductive structure (such as a bit line) thereon is provided. A contact area is located on the semiconductor structure adjacent to the conductive structure. A dielectric layer, preferably composed of silicon oxide is formed over the conductive structure and the semiconductor structure. A top hard mask layer is formed over the dielectric layer. A contact opening is formed in the top hard mask layer and the dielectric layer using an etch selective to oxide over polysilicon, thereby exposing the contact region of the semiconductor structure adjacent to the conductive structure without etching through the conductive structure. A first lining dielectric layer, a second lining dielectric layer, and a third lining dielectric layer are sequentially deposited on the sidewalls of the contact opening and on the contact area of the semiconductor structure. The first and third lining dielectric layers are preferably composed of silicon dioxide and the third lining dielectric layer is preferably composed of silicon nitride. The third lining dielectric layer is anisotropically etched forming a second contact opening in the second lining dielectric layer over the contact area while leaving a spacer on the sidewall of the contact opening. The second lining dielectric layer and the first lining dielectric layer are anisotropically etched to expose the contact area of the semiconductor structure, while the spacer prevents erosion of the second lining dielectric layer and the first lining dielectric layer on the sidewall of the contact opening. The remaining spacer is removed, preferably using a buffered HF dip. A polysilicon contact layer is formed on the second lining dielectric layer and on the contact area of the semiconductor structure.
Abstract:
A modified method for forming stacked capacitors for DRAMs which circumvents oxide erosion due to misalignment is described. A planar silicon oxide (SiO.sub.2) first insulating layer is formed over device areas. First openings are etched for capacitor node contacts. A polysilicon layer is deposited and etched back to form node contacts in the first openings, which are generally recessed due to overetching to completely remove the polysilicon on the insulating surface. A Si.sub.3 N.sub.4 etch-stop layer is deposited to protect the exposed sidewalls in the first openings. A disposable second SiO.sub.2 insulating layer is deposited and second openings are etched over and to the node contacts for forming bottom electrodes. A conformal second polysilicon layer is deposited and chemically/mechanically polished back to form the bottom electrodes in the second openings. The second insulating layer is removed by wet etching to the etch-stop layer. When the second openings are misaligned over the node contact openings, the Si.sub.3 N.sub.4 on the sidewalls protects the SiO.sub.2 first insulating layer from being eroded over the devices on the substrate. The capacitors are now completed by forming an inter-electrode dielectric layer on the bottom electrodes, and depositing and patterning a third polysilicon layer for top electrodes.
Abstract translation:描述了一种用于形成用于DRAM的堆叠电容器的修改方法,其规避了由于未对准引起的氧化物侵蚀。 在器件区域上形成平面氧化硅(SiO 2)第一绝缘层。 第一个开口蚀刻电容器节点触点。 沉积多晶硅层并将其回蚀刻以形成第一开口中的节点接触,其通常由于过蚀刻而凹陷以完全去除绝缘表面上的多晶硅。 沉积Si 3 N 4蚀刻停止层以保护第一开口中暴露的侧壁。 沉积一次性第二SiO 2绝缘层,并且在节点触点上蚀刻第二开口并形成底部电极。 沉积保形第二多晶硅层并在第二开口中化学/机械抛光以形成底部电极。 通过湿法蚀刻去除蚀刻停止层来除去第二绝缘层。 当第二开口在节点接触开口上不对准时,侧壁上的Si 3 N 4保护SiO 2第一绝缘层免受衬底上的器件的侵蚀。 现在通过在底部电极上形成电极间电介质层,并沉积和构图顶部电极的第三多晶硅层来完成电容器。
Abstract:
A method for making cylinder-shaped stacked capacitors for DRAMs is described. A planar first insulating layer is formed over device areas. An etch-stop layer, a second insulating layer, and a polish-back endpoint detect layer are deposited in which cylinder-shaped capacitors with node contacts are formed. First openings for node contacts are etched in the polish-back and second insulating layers to the etch-stop layer aligned over the device areas. Wider second openings, aligned over the first openings, are etched through the polish-back layer, and also removes the etch-stop layer in the first openings. The second insulating layer in the second openings is etched to the etch-stop layer, while the first insulating layer is etched in the first openings for node contact openings. A doped first polysilicon layer is deposited and polished back to the polish-back detect layer to form concurrently the node contacts in the first openings and bottom electrodes in the second openings. The second insulating layer is removed by a wet etch. A thin dielectric layer is deposited, and top electrodes are formed from a second polysilicon layer. The etch-stop layer provides better control of the etching depth for the first and second openings that improves reliability while providing a simple manufacturing process.
Abstract:
A method to eliminate voids in the dielectric oxide between closely spaced conducting lines is achieved. A substrate is provided. Narrowly spaced conductive lines are provided on the substrate. A high density plasma (HDP) dielectric layer is deposited overlying the conductive lines and the substrate. The HDP layer is etched through to expose the edges of the conducting lines. An insulating layer is deposited overlying the HDP layer and conducting lines. A chemical mechanical polishing (CMP) is used to remove the peaks of the insulating layer, exposing the HDP layer in the area overlying the conducting lines. The exposed HDP layer is etched away exposing the top surface of the conducting lines. The insulating layer is then selectively etched away. Spacers may then be added along the sidewalls of the conductor. Finally, a second HDP layer is deposited overlying the first dielectric layer and conducting lines free from voids. The integrated circuit device is completed.