Abstract:
A hydroisomerization catalyst comprising a molecular sieve belonging to the ZSM-48 family of zeolites; an inorganic oxide support; one or more first modifiers selected from Groups 8 to 10; and one or more second modifiers selected from the group consisting of calcium (Ca), chromium (Cr), magnesium (Mg), lanthanum (La), barium (Ba), praseodymium (Pr), strontium (Sr), potassium (K) and neodymium (Nd). The molecular sieve comprises: a silicon oxide to aluminum oxide mole ratio of about 40 to about 220; at least about 70% polytype 6 of the total ZSM-48-type material present in the product; and an additional EUO-type molecular sieve phase in an amount of between about 0 and about 7.0 percent by weight of the total product. The molecular sieve has a morphology characterized as polycrystalline aggregates comprising crystallites collectively having an average aspect ratio of between about 1 and about 8.
Abstract:
An improved hydroisomerization catalyst system and process for making a base oil product using a combined catalyst system comprising SSZ-91 molecular sieve and SSZ-95 molecular sieve. The catalyst system and process generally involves the use of a catalyst comprising an SSZ-91 molecular sieve and a separate catalyst comprising an SSZ-95 molecular sieve to produce dewaxed base oil products by sequentially contacting the catalysts with a hydrocarbon feedstock. The catalyst system and process provide improved base oil yield along with other beneficial base oil properties.
Abstract:
The present invention is directed to an improved finished hydroisomerization catalyst manufactured from a first high nanopore volume (HNPV) alumina having a broad pore size distribution (BPSD), and a second HNPV alumina having narrow pore size distribution (NPSD). Their combination yields a HNPV base extrudate having a low particle density as compared to a conventional base extrudates.
Abstract:
The present invention is directed to an improved finished hydroisomerization catalyst manufactured from a first high nanopore volume (HNPV) alumina having a broad pore size distribution (BPSD), and a second HNPV alumina having narrow pore size distribution (NPSD). Their combination yields a HNPV base extrudate having larger porosity with a bimodal pore size distribution as compared to a conventional base extrudates.
Abstract:
The present application pertains to family of new crystalline molecular sieves designated SSZ-92. Molecular sieve SSZ-92 is structurally similar to sieves falling within the ZSM-48 family of molecular sieves and is characterized as having magnesium.
Abstract:
The present application pertains to family of new crystalline molecular sieves designated SSZ-93. Molecular sieve SSZ-93 is structurally similar to sieves falling within the MTT structure type such as SSZ-32x, SSZ-32, ZSM-23, EU-13, ISI-4, and KZ-1 family of molecular sieves. SSZ-93 is characterized as having magnesium.
Abstract:
An improved hydroisomerization catalyst and process for making a base oil product using a catalyst comprising SSZ-91 molecular sieve and ZSM-12 molecular sieve. The catalyst and process generally involves the use of a catalyst comprising an SSZ-91 molecular sieve combined with a ZSM-12 molecular sieve to produce dewaxed base oil products by contacting the catalyst with a hydrocarbon feedstock. The catalyst and process provide improved base oil cold properties, such as pour point and cloud point, along with other beneficial base oil properties.
Abstract:
Described are processes to produce base oils with one more improved properties, e.g., lower aromatics, economically and/or efficiently. In some embodiments, the processes relate to two stage (or more) hydrofinishing which advantageously provides base oils with lower aromatics than comparable one stage processes.
Abstract:
Provided is a process for preparing base oil from a waxy hydrocarbon feedstock by contacting the hydrocarbon feedstock in a hydroisomerization zone under hydroisomerization conditions. The reaction is in the presence of hydrogen and an inert gas, with the total pressure in the hydroisomerization zone being at least 400 psig. A product from the hydroisomerization zone is collected and separated into base oil products and fuel products. The inert gas can comprise any suitable inert gas, but is generally nitrogen, methane or argon. Nitrogen is used in one embodiment.
Abstract:
An improved hydroisomerization catalyst system and process for making a base oil product using a combined catalyst system comprising SSZ-91 molecular sieve and SSZ-95 molecular sieve. The catalyst system and process generally involves the use of a catalyst comprising an SSZ-91 molecular sieve and a separate catalyst comprising an SSZ-95 molecular sieve to produce dewaxed base oil products by sequentially contacting the catalysts with a hydrocarbon feedstock. The catalyst system and process provide improved base oil yield along with other beneficial base oil properties.