摘要:
An apparatus and method are provided that enable I/O devices to be shared among multiple operating system domains. The apparatus includes a first plurality of I/O ports, a second I/O port, and a plurality of port initialization logic elements. The first plurality of I/O ports is coupled to a plurality of operating system domains through a load-store fabric. Each of the first plurality of I/O ports routes transactions between the plurality of operating system domains and the switching apparatus. The second I/O port is coupled to a first shared input/output endpoint. The first shared input/output endpoint is configured to request/complete the transactions for each of the plurality of operating system domains. One of the plurality of port initialization logic elements is coupled to the second I/O port and remaining ones of the plurality of port initialization logic elements are each coupled to a corresponding one of the first plurality of I/O ports. The plurality of port initialization logic elements is configured to initialize corresponding links between each of the plurality of operating system domains and the switching apparatus, and between the first shared input/output endpoint and the switching apparatus, to support the transactions, where each of the plurality of port initialization logic elements automatically configures a corresponding polarity for each of the first plurality of I/O ports and the second I/O port, and where the corresponding polarity is in a default polarity prior to being configured.
摘要:
An apparatus and method is provided for allowing I/O devices to be shared and/or partitioned among a plurality of processing complexes within the load/store fabric of each of the processing complexes without requiring modification to the operating system or driver software of the processing complexes. The apparatus and method includes a switch for selectively coupling each of the processing complexes to one or more shared I/O devices. The apparatus and method further includes placing information within packets transmitted between the switch and the I/O devices to identify which of the processing complexes the packets are associated with. The invention further includes an apparatus and method within the shared I/O devices to allow the shared I/O devices to service each of the processing complexes independently.
摘要:
An apparatus has a first plurality of I/O ports, a second I/O port, and link training logic. The first plurality is coupled to a plurality of operating system domains through a load-store fabric. Each of the first plurality is configured to route transactions between the plurality of operating system domains and the switching apparatus. The second I/O port is coupled to a first shared input/output endpoint. The first shared input/output endpoint is configured to request/complete the transactions for each of the plurality of operating system domains. The link training logic is coupled to the second I/O port. The link training logic initializes a link between the second I/O port and the first shared input/output endpoint to support the transactions corresponding to the each of the plurality of operating system domains. The link is initialized in a manner that is transparent to the plurality of operating system domains.
摘要:
An apparatus and method are provided that enable I/O devices to be shared among multiple operating system domains. The apparatus has a first plurality of I/O ports, a second I/O port, and link training logic. The first plurality of I/O ports is coupled to a plurality of operating system domains through a load-store fabric. Each of the first plurality of I/O ports is configured to route transactions between the plurality of operating system domains and the switching apparatus. The second I/O port is coupled to a first shared input/output endpoint. The first shared input/output endpoint is configured to request/complete the transactions for each of the plurality of operating system domains. The link training logic is coupled to the second I/O port. The link training logic initializes a link between the second I/O port and the first shared input/output endpoint to support the transactions corresponding to the each of the plurality of operating system domains. The link is initialized in a manner that is transparent to the plurality of operating system domains.
摘要:
An improved process for forming a UV emitting diode is described. The process includes providing a substrate. A super-lattice is formed directly on the substrate at a temperature of at least 800 to no more than 1,300° C. wherein the super-lattice comprises AlxInyGa1-x-yN wherein 0
摘要翻译:描述了用于形成UV发光二极管的改进方法。 该方法包括提供基底。 超晶格在至少800至不超过1300℃的温度下直接形成在衬底上,其中超晶格包括Al x In y Ga 1-x-y N,其中0
摘要:
The present invention is generally directed to methods of selectively doping a substrate and the resulting selectively doped substrates. The methods include doping an epilayer of a substrate with the selected doping material to adjust the conductivity of either the epilayers grown over a substrate or the substrate itself. The methods utilize lithography to control the location of the doped regions on the substrate. The process steps can be repeated to form a cyclic method of selectively doping different areas of the substrate with the same or different doping materials to further adjust the properties of the resulting substrate.
摘要:
A vertically conducting LED comprising, in a layered arrangement: a highly thermally conductive submount wherein the highly conductive submount has a thermal conductivity of at least 100 W/m0K; a p-type layer comprising Al1-x-yInyGax N wherein 0≦x≦1 and 0≦y≦1; a quantum well layer comprising Al1-x-yInyGaxN wherein 0≦x≦1 and 0≦y≦1; an n-type layer comprising Al1-x-yInyGaxN wherein 0≦x≦1 and 0≦y≦1; and an n-type contact layer wherein the LED has a peak emission at 200-365 nm.
摘要:
Ultraviolet light emitting illuminator, and method for fabricating same, comprises an array of ultraviolet light emitting diodes and a first and a second terminal. When an alternating current is applied across the first and second terminals and thus to each of the diodes, the illuminator emits ultraviolet light at a frequency corresponding to that of the alternating current. The illuminator includes a template with ultraviolet light emitting quantum wells, a first buffer layer with a first type of conductivity and a second buffer layer with a second type of conductivity, all deposited preferably over a strain-relieving layer. A first and second metal contact are applied to the semiconductor layers having the first and second type of conductivity, respectively, to complete the LED. The emission spectrum ranges from 190 nm to 369 nm. The illuminator may be configured in various materials, geometries, sizes and designs.
摘要:
Novel silicon dioxide and silicon nitride deposition methods are generally disclosed. In one embodiment, the method includes depositing silicon on the surface of a substrate having a temperature of between about 65° C. and about 350° C. The heated substrate is exposed to a silicon source that is substantially free from an oxidizing agent. The silicon on the surface is then oxidized with an oxygen source that is substantially free from a silicon source. As a result of oxidizing the silicon, a silicon oxide layer forms on the surface of the substrate. Alternatively, or in additionally, a nitrogen source can be provided to produce silicon nitride on the surface of the substrate.
摘要:
An improved process for forming a UV emitting diode is described. The process includes providing a substrate. A super-lattice is formed directly on the substrate at a temperature of at least 800 to no more than 1,300° C. wherein the super-lattice comprises AlxInyGa1-x-yN wherein 0
摘要翻译:描述了用于形成UV发光二极管的改进方法。 该方法包括提供基底。 超晶格在至少800至不超过1300℃的温度下直接形成在衬底上,其中超晶格包括Al x In y Ga 1-x-y N,其中0