Abstract:
A composite polymer composition comprising: the emulsion polymerization product of: (i) an aqueous polyolefin dispersion comprising the melt kneading product of one or more polyolefins, from 2 to 25 wt % of one or more dispersion stabilizing agents and water, and (ii) one or more (meth)acrylic monomers; wherein the one or more polyolefins have a Tg equal to or less than 50° C.; and wherein the melt kneading product (i) comprises polymer particles having a volume average particle size between 150 nm and 2000 nm dispersed in the water; and wherein the one or more (meth)acrylic monomers polymerize onto the polymer particles form composite polymer particles is provided. Also provided is a method of making the composition and impact modifiers comprising the composition.
Abstract:
A mixture of first and second redispersible polymer powders where the first redispersible polymer powder has a copolymer having a glass transition temperature of 60 degrees Celsius or higher and an acid level in a range of 0.1 to 8 weight-percent percent as determined by potentiometric titration according to ASTM D664 and the second redispersible polymer powder is selected from vinyl acetate ethylene copolymer redispersible polymer powders and polymer powders of a blend of vinyl acetate ethylene copolymer and vinyl ester of versatic acid copolymer is useful as a component in a dry-mix formulation that further contains Portland cement, alumina rich cement and calcium sulfate.
Abstract:
Disclosed is an impact modified resin comprises a matrix polymer resin and an impact modifier. The impact modifier comprises particles of a crosslinked polyolefin elastomer having one or more (meth)acrylic monomers grafted to the crosslinked polyolefin elastomer particles. The matrix polymer resin is a styrenic polymer.
Abstract:
Methods for preparing waterborne heat seal coating compositions are disclosed, including (A) melt blending an ethylene vinyl acetate copolymer, a tackifier, and a wax in a first mixing apparatus to form a melt blend, (B) contacting the melt blend with an initial aqueous stream comprising a neutralizing agent, water, and a surfactant in an emulsification zone of the second mixing apparatus to form a dispersion, and (C) diluting the dispersion with water in a dilution zone of the second mixing apparatus to form the waterborne heat seal coating composition. Methods for preparing waterborne heat seal coating compositions are also disclosed, including (A) melt blending an ethylene vinyl acetate copolymer, a tackifier, and a wax in a mixing and conveying zone of a mixing apparatus to form a melt blend, (B) contacting the melt blend with an initial aqueous stream comprising a neutralizing agent, water, and a surfactant in an emulsification zone of the mixing apparatus to form a dispersion, and (C) diluting the dispersion with water in a dilution zone of the mixing apparatus to form the waterborne heat seal coating composition, wherein the length-to-diameter ratio of the extruder mixing apparatus is greater than or equal to 12 to 1. Waterborne heat seal coating compositions prepared according to the disclosed methods are also disclosed.
Abstract:
Provided is a method of modifying polycarbonate comprising blending the polycarbonate with composite particles, wherein the composite particles comprise (I) a crosslinked polyolefin core, and (II) a full or partial shell comprising polymerized units of one of more vinyl monomers.
Abstract:
Provided are personal care compositions comprising a polyacrylate oil gel composition comprising (a) hydrophobic oil ester, and (b) polymer beads comprising (i) 65 to 90 weight % of a soft phase comprising polymerized units derived from first monoethylenically unsaturated monomers having a Tg of less than 25° C. after polymer formation, and (ii) 10 to 35 weight % of a hard phase comprising polymerized units derived from second monoethylenically unsaturated monomers having a Tg of more than 40° C. after polymer formation, wherein the polymer beads have an average particle size of from 2 to 30 μm.
Abstract:
The present invention provides shelf stable redispersible multilayer polymer particles (RDPs) comprising a major proportion of epoxy resins, a methacrylic acid or anhydride containing alkali soluble polymer outer layer and a hydrophobic chain transfer agent or a high glass transition temperature colloidal stabilizer, such as poly(vinyl pyrrolidinone) or its copolymer, as well as to methods of making the same.
Abstract:
A mixture of first and second redispersible polymer powders where the first redispersible polymer powder has a copolymer having a glass transition temperature of 60 degrees Celsius or higher and an acid level in a range of 0.1 to 8 weight-percent percent as determined by potentiometric titration according to ASTM D664 and the second redispersible polymer powder is selected from vinyl acetate ethylene copolymer redispersible polymer powders and polymer powders of a blend of vinyl acetate ethylene copolymer and vinyl ester of versatic acid copolymer is useful as a component in a dry-mix formulation that further contains Portland cement, alumina rich cement and calcium sulfate.
Abstract:
A detergent additive comprising an active, the active comprising one or both of tetraacetylethylenediamine or triacetylethylenediamine; and a copolymer having maleic anhydride-based repeat units and either or both of olefinic or styrenic-based repeat units; and wherein at least a portion of the maleic anhydride-based repeat units are neutralized.
Abstract:
The present invention provides aqueous compositions for making damage tolerant coatings comprising a blend of (i) from 2 to 30 wt. %, based on the total weight of solids in the composition, of an acid or anhydride functionalized polyolefin dispersion having an average particle size of from 0.2 to 5 microns, and (ii) a film forming dispersion of one or more epoxy resins chosen from epoxy resins having an epoxy equivalent weight (EEW) of from 150 to 4,000 having an average particle size of from 0.2 to 1.0 microns, wherein the polyolefin dispersion is stabilized with from 2 to 8 wt. %, based on the total weight of solids in the composition, one or more anionic surfactants, such as a sulfate containing surfactant, and, further wherein, the compositions have a pH of from 3 to 8.