Abstract:
Technologies are generally described for a system and process effective to coat a substance with graphene. A system may include a first container including graphene oxide and water and a second container including a reducing agent and the substance. A third container may be operative relationship with the first container and the second container. A processor may be in communication with the first, second and third containers. The processor may be configured to control the third container to receive the graphene oxide and water from the first container and to control the third container to receive the reducing agent and the substance from the second container. The processor may be configured to control the third container to mix the graphene oxide, water, reducing agent, and substance under sufficient reaction conditions to produce sufficient graphene to coat the substance with graphene to produce a graphene coated substance.
Abstract:
Technologies are generally described for composite membranes that may include a nanoporous graphene layer sandwiched between a first selective membrane and a porous support substrate. The composite membranes may be formed by depositing the selective membrane on one side of the nanoporous graphene layer, while the other side of the nanoporous graphene layer may be supported at a nonporous support substrate. The nanoporous graphene layer may be removed with the selective membrane from the nonporous support substrate and contacted to the porous support substrate to form the composite membranes. By depositing the selective membrane on a flat surface, the nanoporous graphene on the nonporous support substrate, the selective membranes may be produced with reduced defect formation at thicknesses of as little as 0.1 μm or less. The described composite membranes may have increased permeance compared to thicker selective membranes, and structural strength greater than thin selective membranes alone.
Abstract:
Techniques are generally described for touch-sensitive devices with biometric information determination capabilities. The touch-sensitive device may include one or more of a transmitter, a receiver, and a processor. The transmitter may be configured to emit light towards a surface of the touch-sensitive device and the receiver may be configured to receive reflected light from a touch to the touch-sensitive device. The processor may be arranged to receive signals from the receiver and determines biometric information, and in some examples location of touch, based on the signals.
Abstract:
Technologies are generally described for methods, systems, and structures that include patterns formed by optical lithography. In some example methods, a photoresist layer is applied to a substrate, and a grapheme layer can be applied to the photoresist layer. Light can be applied through a mask to the graphene layer, where the mask includes a pattern. The light can form the pattern on the graphene layer such that the pattern forms on the photoresist layer.
Abstract:
Technologies are generally described for gas filtration and detection devices. Example devices may include a graphene membrane and a sensing device. The graphene membrane may be perforated with a plurality of discrete pores having a size-selective to enable one or more molecules to pass through the pores. A sensing device may be attached to a supporting permeable substrate and coupled with the graphene membrane. A fluid mixture including two or more molecules may be exposed to the graphene membrane. Molecules having a smaller diameter than the discrete pores may be directed through the graphene pores, and may be detected by the sensing device. Molecules having a larger size than the discrete pores may be prevented from crossing the graphene membrane. The sensing device may be configured to identify a presence of a selected molecule within the mixture without interference from contaminating factors.
Abstract:
Examples of methods, systems and computer accessible mediums related to producing synthetic meat are generally described herein. In some example methods, a substrate configured to support cell growth may be provided. The substrate may be seeded with cells. The seeded substrate may be rolled through a bioreactor having a roll-to-roll mechanism, thereby allowing nutrients and growth factors to interact with the cells. The seeded substrate may be stretched to simulate muscle action. The seeded substrate may be monitored for uniformity of cell growth as it is rolled through the bioreactor. A film of synthetic meat is obtained from the substrate.
Abstract:
Technologies described herein are generally related to graphene production. In some examples, a system is described that may include a first container, a second container, and/or a chamber. The first container may include a first solution with a reducing agent, while the second container may include a second solution with graphene oxide. The chamber may be in operative relationship with the first and the second containers, and configured effective to receive the first and second solutions and provide reaction conditions that facilitate contact of the first and second solutions at an interfacial region sufficient to produce graphene at the interfacial region.
Abstract:
Technologies are generally described for a photoresist and methods and systems effective to form a pattern in a photoresist on a substrate. In some examples, the photoresist includes a resin, a photoinitiator and a photoinhibitor. The photoinitiator may be effective to generate a first reactant upon the absorption of at least one photon of a particular wavelength of light. The first reactant may be effective to render the resin soluble or insoluble in a photoresist developer. The photoinhibitor may be effective to generate a second reactant upon the absorption of at least one photon of the particular wavelength of light. The second reactant may be effective to inhibit the first reactant.
Abstract:
Technologies are generally described for controlling fabrication of a 3D printed article by monitoring a temperature of an active growth region during a 3D printing of polymer material. A polymer material may be doped with one or more fluorescent molecules, which may be excited during a 3D printing of the polymer material. An intensity of light emitted from the fluorescent molecules may be determined to create a fluorescence intensity map, which may be converted into a temperature map in order to monitor a temperature of the active growth region, and generate one or more instructions based on the monitored temperature. One or more characteristics of the active growth region may then be modulated based on the instructions provided. Modulating characteristics of the active growth region based on the monitored temperature may allow better process control, which may be used to enhance a speed and resolution of 3D printing systems.