Abstract:
The present disclosure relates to a transfer and bonding method using a laser. As a plurality of devices or packages are simultaneously transferred onto a substrate from a transfer tape by irradiating a top surface of the transfer tape with a first laser, and the plurality of transferred devices or packages are simultaneously bonded to pads of a substrate by irradiating a top surface of the devices or packages with a second laser, a speed of a transfer and bonding process may be extremely maximized.
Abstract:
Provided is an optical switch including a substrate, a first optical waveguide disposed on the substrate and having a conductive portion disposed on one surface thereof, and a second optical waveguide disposed on the substrate being spaced apart from the first optical waveguide and having an electrode portion disposed on one surface thereof. The electrode portion and the conductive portion face each other. The electrode portion controls an optical field between the first optical waveguide and the second optical waveguide.
Abstract:
Provided is a thermo-optic optical switch including an input waveguide configured to receive an optical signal, an output waveguide configured to output the optical signal, branch waveguides branching from the input waveguide to be connected to the output waveguide, and heater electrodes disposed on the branch waveguides and configured to heat the branch waveguides, wherein the branch waveguides includes first and second phase shifters having first and second thermo-optic coefficients of opposite signs.
Abstract:
Provided are a semiconductor device and a method for manufacturing the same. The semiconductor device according to an embodiment of the inventive concept includes a first semiconductor chip having a recess portion in one surface thereof; a first adhesion pattern filled within the recess portion of the first semiconductor chip; and a second semiconductor chip disposed on the first adhesion pattern. The second semiconductor chip may represent improved heat dissipation characteristics.
Abstract:
Disclosed are an optical input/output device and an opto-electronic system including the same. The device includes a bulk silicon substrate, at least one vertical-input light detection element monolithically integrated on a portion of the bulk silicon substrate, and at least one vertical-output light source element monolithically integrated on another portion of the bulk silicon substrate adjacent to the vertical-input light detection element. The vertical-output light source element includes a III-V compound semiconductor light source active layer combined with the bulk silicon substrate by a wafer bonding method.
Abstract:
Provided is a wavelength combiner including a slab waveguide; an output waveguide extended from the slab waveguide in a first direction; and at least one rib waveguide disposed at an interval horizontally from the output waveguide and extended from the slab waveguide in the first direction, wherein the rib waveguide is tapered in the first direction.
Abstract:
Provided is a photodetector including a substrate, a first doped region on the substrate, a second doped region having a ring structure, wherein the second doped region is provided in the substrate, surrounds the first doped region and is horizontally spaced apart from a side of the first doped region, an optical absorption layer on the first doped region, a contact layer on the optical absorption layer, a first electrode on the contact layer, and a second electrode on the second doped region.
Abstract:
Provided are an optical coupler and an arrayed-waveguide grating structure including the same. The coupler includes a lower clad layer, a core comprising a slab waveguide region disposed on one side of the lower clad layer and a ridge waveguide region disposed on the other side of the lower clad layer, and an upper clad disposed on the core, wherein the ridge waveguide region comprises a self-focusing region configured to focus an optical signal provided form the slab waveguide region and thus to prevent scattering of the optical signal.