Three axis magnetic field sensor
    22.
    再颁专利

    公开(公告)号:USRE49404E1

    公开(公告)日:2023-01-31

    申请号:US15470997

    申请日:2017-03-28

    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).

    Perpendicular magnetic memory using spin-orbit torque

    公开(公告)号:US10600460B2

    公开(公告)日:2020-03-24

    申请号:US16157315

    申请日:2018-10-11

    Abstract: Spin-orbit-torque (SOT) control strip lines are provided along the sides of free layers in perpendicular magnetic tunnel junction devices. Current flowing through such SOT control strip lines injects spin current into the free layers such that spin torque is applied to the free layers. The spin torque can be used to force the magnetic state of the free layer to a particular state based on the direction of the current through the SOT control strip line. In other embodiments, the SOT provides an assist to spin-transfer torque generated by current flowing vertically through the magnetic tunnel junction. Some embodiments have dedicated strip lines for a single magnetic tunnel junction such that a three-terminal device results. Other embodiments have multiple magnetic tunnel junctions sharing a strip line, where the strip line can be used to reset all of the magnetic tunnel junctions to the same state and can also be used as an assist such that individual magnetic tunnel junctions can be written using selection circuitry.

    Magnetoresistive stack and method of fabricating same

    公开(公告)号:US10347828B2

    公开(公告)日:2019-07-09

    申请号:US16230031

    申请日:2018-12-21

    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.

    MAGNETORESISTIVE STACK AND METHOD OF FABRICATING SAME

    公开(公告)号:US20180226574A1

    公开(公告)日:2018-08-09

    申请号:US15941153

    申请日:2018-03-30

    CPC classification number: H01L43/12 G11C11/161 H01L43/02 H01L43/08 H01L43/10

    Abstract: A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.

    MAGNETORESISTIVE DEVICES AND METHODS THEREFOR

    公开(公告)号:US20180158498A1

    公开(公告)日:2018-06-07

    申请号:US15831736

    申请日:2017-12-05

    Abstract: The present disclosure is directed to exemplary methods of manufacturing a magnetoresistive device. In one aspect, a method may include forming one or more regions of a magnetoresistive stack on a substrate, wherein the substrate includes at least one electronic device. The method also may include performing a sole annealing process on the substrate having the one or more magnetoresistive regions formed thereon, wherein the sole annealing process is performed at a first minimum temperature. Subsequent to performing the sole annealing process, the method may include patterning or etching at least a portion of the magnetoresistive stack. Moreover, subsequent to the step of patterning or etching the portion of the magnetoresistive stack, the method may include performing all additional processing on the substrate at a second temperature below the first minimum temperature.

    Method for reset and stabilization control of a magnetic sensor

    公开(公告)号:US09766301B2

    公开(公告)日:2017-09-19

    申请号:US14953572

    申请日:2015-11-30

    CPC classification number: G01R33/0029 G01R33/0041 G01R33/04 G01R33/098

    Abstract: A magnitude and direction of at least one of a reset current and a second stabilization current (that produces a reset field and a second stabilization field, respectively) is determined that, when applied to an array of magnetic sense elements, minimizes the total required stabilization field and reset field during the operation of the magnetic sensor and the measurement of the external field. Therefore, the low field sensor operates optimally (with the highest sensitivity and the lowest power consumption) around the fixed external field operating point. The fixed external field is created by other components in the sensor device housing (such as speaker magnets) which have a high but static field with respect to the low (earth's) magnetic field that describes orientation information.

    Three axis magnetic field sensor
    30.
    再颁专利

    公开(公告)号:USRE46428E1

    公开(公告)日:2017-06-06

    申请号:US15165600

    申请日:2016-05-26

    CPC classification number: H01L27/22 B82Y25/00 G01R33/093 H01L43/08

    Abstract: Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).

Patent Agency Ranking