Abstract:
A hybrid vehicle includes an engine and an electric machine selectively coupled to the engine via a clutch. The engine, electric machine, and clutch are arranged along a common axis. At least one controller is programmed to execute various commands when the vehicle is in park or neutral and the accelerator pedal of the vehicle is depressed. This enhances perceived vehicle reactions in response to accelerator pedal movement. To do so, the controller is programmed to control a rate of speed increase of the electric machine based on a rate of the depression of the accelerator pedal (e.g., “speed control”). Furthermore, the torque output of the engine is controlled to a target value irrespective of engine speed and engine torque is converted into electric energy via the electric machine (e.g., “torque control”). The rate of speed increase of the electric machine is altered when the engine is started.
Abstract:
A vehicle is provided with a powertrain including a battery-powered electric motor, an internal combustion engine, a transmission, and a powertrain controller. The controller is programmed to permit an upshift of a transmission gear ratio while a powertrain torque demand is less than a forecasted available powertrain torque sustainable over a predetermined upcoming duration of time. The controller is also programmed to inhibit an upshift while the torque demand exceeds the forecasted available powertrain torque to reduce successive gear shifts. The controller may be further programmed to, in response to battery a state of charge being less than a threshold, reduce the forecasted available powertrain torque by an amount sufficient to provide a recharge to a battery. The controller may be further still programmed to reduce the forecasted available powertrain torque by an amount sufficient to restart the engine while the powertrain is operating in an engine-off traction mode.
Abstract:
A vehicle includes a starter motor, an engine having an output mechanically coupled to the starter motor, a transmission having an input, and an electric machine mechanically coupled to the transmission input. The vehicle further includes a clutch configured to mechanically couple the electric machine and the output of the engine, and at least one controller. The at least one controller is programmed to initiate an engine start based on driver demand. The controller is further configured to enable pressure to the clutch for the engine start if driver demand is less than a calibratable torque value or enable the starter motor for the engine start if the driver demand is greater than a calibratable torque value. The controller may lock the clutch to the output of the engine in response to the speed of the engine being approximately equal to the speed of the electric machine.
Abstract:
An autonomous vehicle includes an electric powertrain having an electric machine and a traction battery. A vehicle controller is programmed to command power to the electric machine to propel the vehicle along a segment of a route according to a predetermined speed profile that is derived from a predicted heat generation of the battery for the segment such that actual temperatures of the battery remain below a temperature threshold for the segment.
Abstract:
A method includes automatically operating an electrified vehicle in a noise reduction mode, via a control system of the electrified vehicle, if, based at least on noise restriction information and driver history information received by the control system, a current time and a current location of the electrified vehicle are appropriate for invoking the noise reduction mode.
Abstract:
A vehicle includes a step-ratio automatic transmission having clutches engageable to provide forward and reverse gears, an electric machine selectively coupled to the transmission, a main pump powered by the electric machine and supplying oil to actuate selected transmission clutches, a gear selector configured for selecting a transmission gear, and a controller configured to stop the electric machine when the gear selector selects park or neutral, to operate the electric machine in a speed control mode using a higher controller gain in response to the gear selector selecting forward or reverse while the electric machine is stopped until the electric machine and the main pump reach a first speed threshold to reduce engagement delay of at least one of the transmission clutches, and to operate the electric machine using a lower controller gain when the electric machine and the main pump exceed the first speed threshold.
Abstract:
A vehicle having an engine, a starter-generator, and a controller is disclosed. The controller is configured to respond to an engine start command, operate the engine to produce excess torque beyond a demand torque, and in response to engine speed achieving a threshold, operate the starter-generator to load the engine to consume the excess torque and drive the engine speed toward an electric machine speed, and engage a clutch to couple the engine and an electric machine.
Abstract:
A vehicle includes an engine, electric machine, starter-generator, and a controller. The engine and electric machine are each configured to propel the vehicle. The starter-generator is coupled to the engine and is configured to adjust engine speed during an engine start-up event. The controller is programmed to, in response to engine speed increasing towards a target speed during an engine start-up event, generate a target drag torque with the starter-generator to reduce overshoot of the target engine speed.
Abstract:
A vehicle includes a hybrid powertrain with a motor/generator electrically coupled to a high-voltage bus to provide propulsion. The vehicle also includes an integrated starter/generator electrically copulated to a low-voltage bus and configured to start the engine. A vehicle power system includes a power converter electrically coupled between the high-voltage bus and the low-voltage bus. During engine start events, operation of the integrated starter/generator is coordinated with operation of the power converter to reduce voltage sag on the low-voltage bus. An increase rate of current supplied to the integrated starter/generator is limited such that a current output of the power converter does not saturate at a maximum current output for a period of time after initiating the engine start event.
Abstract:
A vehicle includes an engine, a motor selectively coupled to the engine, a transmission selectively coupled to the motor, and a controller. The motor is able to operate as a motor (to provide torque to the transmission) and a generator (to charge a battery). In one mode, the controller can command the engine to both propel the vehicle and provide torque to the motor to charge the battery. The controller estimates the maximum available engine torque in the current gear and maintains the vehicle in the current gear of the transmission. And, the controller commands the motor to charge the battery by a magnitude based on the difference between driver demanded torque and an estimated maximum available engine torque in a current gear of the transmission. This allows the engine to operate at (or near) its maximum torque output to fulfill driver demands and charge the battery while inhibiting downshifting.